Main Article Content


Soil-borne plant pathogenic fungi cause serious losses in agricultural products. The antagonistic fungi for the control of plant diseases have increased efficiency and use of space has emerged as an alternative to other methods for the protection of agricultural products. One of the fungi used for this purpose is Trichoderma species. In this study mu-tant isolates of Trichoderma spp. were used. The resistance and pro-tease enzyme activities of mutant isolates against abiotic factors such as temperature, drought and salinity were investigated. Mutant iso-lates of Trichoderma sp. were showed differed in tolerance to differ-ent abiotic stress factors. Protease enzyme activity produced by iso-lates was influenced by the tested abiotic factors. In the medium con-taining 30% PEG, the highest protease activity was determined in Tm13 isolate. Indigenous Trichoderma strains produced proteases in high temperature, drought and saline conditions. This indicates that isolates may be promising candidates in agricultural production.

Article Details

How to Cite
Kucuk, C., & Gezer, T. (2020). In vitro assessment of protease production and stress tolerance of mutant isolates of Trichoderma sp. Journal of Agriculture and Applied Biology, 1(2), 92-99.


Abdel-Latif, H., & Haggag, W. M. (2005). Biocontrol po-tential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum causing to-mato wilt disease. Arab Journal of Biotechnolohgy. 8 (1), 35-48.
Alamri, A., Mostafa, Y.S., Hashem, M., & Alrumman, S. (2015). Enhancing the biocontrol efficiency of Trichoderma harzianum JF419706 through cell Wall degrading enzyme production. International Journal of Agriculture and Biological Sciences, 18 (4), 765-772.
Amalraj, L. D., Kumar, P., Desai, S., & Akmed, M. H. (2010). In vitro Characterization of Trichoderma viride for abiotic stress tolerance and field evaluation against root rot disease in Vigna mungo L. Journal of Biofer-tility & Biopesticides, 2 (3), 2-5. Begoude, B. A. D., Lahlali, R., Friel, D., Tondje, P. R., & Ji-jakli, M. H. (2007). Response surface methodology study of the combined effects of temperature, pH, and aw on the growth rate of Trichoderma asperel-lum. Journal of Applied Microbiology, 103 (4), 845–854.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ana-lytic of Biochemistry, 72 (1-2), 248-254.
Btaszcyk, L., Siwulski, M., Sobieralski, K., Lisiecka, J., & Je-dryczka, M. (2014). Trichoderma Spp.-application and prospects for use in organic farming and indus-try. Journal of Plant Protection Research, 54 (1), 310-317.
Ferre, F. S., & Santamarina, M. P. (2010). Efficacy of Trichoderma harzianum in suppression of Fusarium culmorum. Annals of Microbiology, 60 (2), 335-340. Gajera, H. P. & Vakharia, D. N. (2012). Production of lytic enzymes by Trichoderma isolates during in vitro antagonism with Aspergillus niger, the causal agent of collar rot of peanut. Brazilian journal of Microbiology, 43 (1), 43-52.
Ghanbarzadeh, B., Safaie, N., & Goltapeh, E. M. (2014). Antagonistic activity and hyphal interactions of Trichoderma spp. against Fusarium proliferatum and F.oxysporum in vitro. Journal Archives of Phyto-pathology and Plant Protection, 47 (16), 1789-1987. Karmel-Reetha, A., Pavani, S. L., & Mohan, S. (2014). Eco-friendly management of fungal antagonistic Tricho-derma sp. against charcoal rot of sunflower caused by Macrophomina phaseolina (Tassi) Goid. Journal of Biopesticides, 7 (1), 73-76. Kumari, R., Shekhawat, K. S., Gupta, R., & Khokhar, M. (2012). Integrated management against root-rot of mungbean (VignarRadiata (L.) Wilczek) indiced by Macrophomina phaseolina. Journal of Plant Pathol-ogy and Microbiology, 3 (5), 136. Lopez-Mondejar, R., Ros, M., & Pascual, J. A. (2011). My-coparasitism-related genes expression of Tricho-derma harzianum isolates to evaluate their efficacy as biological control agent. Biological Control, 56 (1), 59-66. Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational research on Trichoderma: from, om-ics to the field. Annual of Review Phytopathology, 48 (1), 234–246. Mendoza, J. L. H., Pérez, M. I. S., Prieto, J. M. G., Velásquez, J. D. Q., Olivares, J. J. G., & Langarica, H.G.R. (2015). Antibiosis of Trichoderma spp strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina. Brazilian Journal of Mi-crobiology, 46 (4), 1093- 1101.
Mishra, N., Khan, S. S., & Sundari, S. K. (2016). Native iso-late of Trichoderma: a Biocontrol agent with unique stress tolerance properties. World Journal of Micro-biology & Biotechnology, 32 (8), 130-153. Mohammed, H., & Haggag, W. M. (2006). Biocontrol po-tential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum. Brazilian Journal of Microbiology, 37 (2), 35-48. Mukherjee, P. K., & Raghu, K. (1997). Effect of tempera-ture on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii. Myco-pathology, 139 (3), 151–155.
Nikolajeva, V., Petrina, Z., Vulfa, L., Alksne, L., Eze, D., Grantina, L., Gaitnieks, T., & Lielpetere, A. (2012). Growth and antagonism of Trichoderma spp. and conifer pathogen Heterobasidion annosums. in vitro at different temperatures. Advanced of Micro-biology, 2 (3), 295–302. Poosapati, S., Ravulapalli, P. D., Tippirishetty, N., Vishwanathaswany, D. K., & Chunduri, S. (2014). Selection of high temperature and salinity toler-ant Trichoderma isolates with antagonistic activity against Sclerotium rolfsii. SpringerPlus, 3 (1), 641-652.
Qualhato, F. T., Lopes, F. A. C., Steindorff, A. S., Brandao, R. S., Jesuino, R. S. A., & Ulhoa, C. J. (2013). Mycopara-sitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnology Letters, 35 (9), 1461–1468. Rao, K. L. N. M., Raju, K. S., & Ravisankar, H. (2015). Anti-fungal properties of native Trichoderma isolates against Sclerotium rolfsii and Pythium apha-nidermatum infecting tobacco. Journal of Environ-mental Biology, 36 (6), 1349– 1353. PMID: 26688972
Regragui, A., & Lahlou, K. (2005). Effect of salinity on in vitro Trichoderma harzianum Antagonism Against Verticillium dahliae. Pakistan Journal of Biological Sciences, 8 (6), 872-876.
Reetha, A. K., Ravani, S. L., & Mohan, S. (2014). Eco-friendly management of fungal antagonist Tricho-derma sp. against charcoal rot of sunflower caused by Macrophomina phaseolina (Tassi) Goid. Journal of Biopesticides, 7 (1), 73-76.
Rey, M., Delgado-Jarana, J., & Benítez, T. (2001). Im-proved antifungal activity of a mutant of Tricho-derma harzianum CECT 2413 which produces more extracellular proteins. Applied of Microbiology & Bi-otechnology, 55 (1), 604–608.
Schuster, A., & Schmoll, M. (2010). Biology and Biotech-nology of Trichoderma. Applied of Microbiology and Biotechnology, 87 (3), 787-799.
Srivastova, M., Shahid, M., Pandey, S., Kumar, V., singh, A., Trivedi, S., & Srivastova, Y. K. (2015). Trichoderma: A scientific approach against soil borne pathogens. African Journal of Microbiology Research, 9 (50), 2377-2384.
Szekeres, A., Kredics, L., Antal, Z., Kevei, F., & Manczinger, L. (2004). Isolation and characterization of prote-ase overproducing mutants of Trichoderma harzi-anum. FEMS Microbiology Letters, 233 (2), 215−222.