JOURNAL OF AGRICULTURE AND APPLIED BIOLOGY

2024, Vol. 5, No. 1, 35 - 47

http://dx.doi.org/10.11594/jaab.05.01.03

E-ISSN: 2723-5106

Research Article

Improvement of the antioxidant potential: impact of drying and extraction techniques on polyphenols in *Arbutus unedo* L. leaf aqueous extract

Kamel Zemour^{1,2,3,4*}, Kadda Mohamed Amine Chouhim^{1,4*}, Amina Labdelli⁵, Mohamed Mairif¹, Tedj Eddine Adda Ardjane¹, Badreddine Moussaoui^{1,6}, Hafidh Zemour³, Mohammed Laafer¹

- ¹Nature and Life Sciences Department, Faculty of Sciences and Technology, University of Tissemsilt, Algeria
- ²Laboratory of Agroindustrial Chimistry, University of Toulouse, France
- ³Laboratory of Agro-Biotechnology and Nutrition in Semi-Arid Areas, University of Ibn Khaldoun, Algeria
- ⁴Laboratory of Agronomy-Environment, University of Tissemsilt, Algeria
- ⁵Scientific and Technical Research Centre for Arid Areas, Biskra, Algeria
- ⁶Laboratory of Beneficial Microorganisms, Functional Food and Health, Faculty of Natural and Life Sciences, Abdelhamid Ibn Badis University, Mostaganem, Algeria

Article history:

Submitted 17 December 2023 Accepted 19 January 2024 Published 01 March 2024

Keywords:

Arbutus unedo L.
Assessment method
Biological quality
Temperature
Treatment

*Corresponding author:

E-mail:

kamel.zemour@univ-tissemsilt.dz chouhim.kada@univ-tissemsilt.dz

Abstract

The search for alternatives to chemical pharmaceutical products remains an urgent and crucial step for humanity. In this regard, the use of plants presents an ideal approach for such biological studies. Arbutus unedo L., which belongs to the family Ericaceae, is one of the species that holds significant importance in traditional pharmaceutical uses. In Algeria, the use of this species in traditional treatment is generally rare. Therefore, this study aims to highlight its medicinal importance and the proper method for extracting its bioactive elements. To achieve this, the biological activity of leaves including total phenolic content (TPC), DPPH assay, and total flavonoid content (TFC), were assessed under four different drying temperatures (shade-drying, sun-drying, 40°C and 60°C) and two extraction methods after maceration (centrifugation, filtration). The results have indicated that these processes have affected the final accumulation of polyphenols and antioxidant activity in the leaf extracts. Additionally, it has been highlighted that the centrifugation method extracts a higher biochemical amount, especially after drying at 40°C. Furthermore, *Arbutus* unedo L. leaves should be considered a promising source of natural compounds to be used as ingredients in various fields.

How to cite:

Zemour K., Chouhim, K. M. A., Labdelli, A., Mairif, M., Ardjane, T. E. A., Moussaoui, B., Zemour, H., & Laafer, M. (2024). Improvement of the antioxidant potential: impact of drying and extraction techniques on polyphenols in *Arbutus unedo* L. leaf aqueous extract. *Journal of Agriculture and Applied Biology*, *5*(1): 35 - 47. doi: 10.11594/jaab.05.01.03

1. Introduction

Medicinal plants have an important place in therapeutic and cosmetic uses worldwide (Zemour et al., 2019; Labdeli et al., 2019; El Zerey-Belaskri et al., 2022; Sousa et al., 2022; Lenzi et al., 2022). Throughout history, various cultures and traditional systems of medicine have relied on the healing properties of plants to treat illnesses and promote well-being. Medicinal plants play a deeply rooted role in the culture of indigenous communities in Africa, where they are extensively utilized for the treatment of various diseases (Frimpong et al., 2021; Haris et al., 2023; Wanga & Nyamboki, 2023; Abebe et al., 2022). These plants contain a wide range of phytochemicals that exhibit pharmacological and therapeutic effects (Dutta et al., 2023; Nafeh et al., 2023; Kumar et al., 2023; Kim & Kang, 2023). It has been demonstrated in previous studies that medicinal plants have potential antiaging and antioxidant activities (Zemour et al., 2019; Chaikhong et al., 2023; Yazan et al., 2021; Cör Andrejc et al., 2022). Additionally, natural products are associated with fewer side effects when compared to synthetic drugs, making them a potential alternative solution (Nisar et al., 2018; Youssef et al., 2022; Bafandeh et al., 2023; Ahdaa et al., 2023).

Among these plants, the strawberry tree, scientifically known as *Arbutus unedo* L., is a plant native to the Mediterranean Region that represents a significant source of biologically active compounds (Ateş et al., 2022; Morales, 2022; Morgado et al., 2018; El Mekkaoui et al., 2023; Tenuta et al., 2019). It is recognized for its fruits and leaves, which have been traditionally used for their positive effects on health. For many years, it has been employed in folk medicine to alleviate a range of health issues, including urological and kidney problems, dermatological conditions, cardiovascular disorders, and gastrointestinal diseases (Bebek Markovinovic et al., 2022; Scarano et al., 2022; Abidi et al., 2016). *Arbutus unedo* L. (local name in Algeria: Lanj) is a plentiful medicinal plant found in various regions of Algeria. However in these areas, the traditional therapeutic practices associated with it became less and less transmitted and tends to disappear (Senouci et al., 2019).

Phenolic compounds and flavonoids have the potential to serve as alternative bioactive agents within the pharmaceutical and medicinal domains, contributing to the enhancement of human health and the prevention and treatment of various diseases (Sun & Shahrajabian, 2023). Phenolic compounds exhibit significant potential in combating diverse human viruses, and they additionally possess immunomodulatory and anti-inflammatory properties (Tirado-Kulieva et al., 2022).

It is commonly recognized that plant resources undergo significant natural fluctuations due to the genetic makeup and environmental factors affecting their growth and their quality characteristics (Pacheco-Hernández et al., 2021). Also, the drying method effect on this quality has been extensively reported in several papers (Guclu et al., 2021; Nurhaslina et al., 2022; Lee et al., 2022). Drying process plays a significant role in inhibiting enzymatic reactions, preventing the growth of microorganisms, and reducing weight to facilitate cost-effective transportation and storage (Baibuch et al., 2023; Singhal et al., 2020). The specific drying conditions, particularly the temperature and duration of the process, have an impact on the final extract composition (Santos et al., 2022; Lang et al., 2019; El Gamal et al., 2023).

Therefore, the aim of this study is to offer novel insights into the characterization of strawberry tree leaf extracts from Northwest Algeria (Tissemsilt), particularly focusing on their polyphenolic compounds and associated activities. Herein, this is essential to obtain comprehensive and representative information on the composition of the leaves and to understand the impact of different drying methods on this extract. Another objective of this study is to determine the most suitable drying method for producing *Arbutus unedo* extract powder with optimal properties while minimizing production costs.

2. Materials and methods

2.1. Collection of plant and drying process

Spontaneously growing leaves of *Arbutus unedo* L. were collected in March 2023 from a semi-arid area in the Larbaa forest (35°54'20"N, 1°30'41"E, 1498m), located in Tissemsilt, in western Algeria (Figure 1). This region is characterized by low rainfall and high temperature, typical of a semi-arid climate.

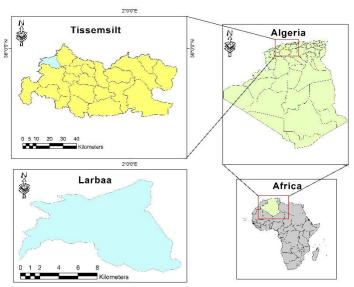


Figure 1. Map of the study area

Only healthy leaves were collected randomly according to the method of transect, from 10 shrubs for the intended laboratory analyses. After that, the fresh leaves were divided into four batches with three replicates (Figure 2). The two first batches were dried in an oven at 40°C and 60°C for 4 hours, while the other batches were air-dried for 8 days under shade and sun (Figure 2). Three repetitions were carried out for each sample. After this drying step, the leaves were finely powdered and stored at a temperature of 4°C until they are used for extraction (filtration, centrifugation) after maceration. The studied parameters were conducted at Laboratory of the Faculty of Sciences and Technology at Tissemsilt University (Algeria).

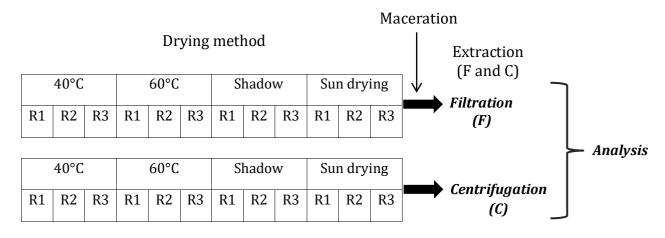


Figure 2. Experimental setup (R: number of repetition)

2.2 Preparation of the aqueous extract

5g of the dried powder was mixed with 100 ml of distilled water at room temperature for 24 hours. Subsequently, for the extract recovery, two extraction techniques were employed. The first technique involved centrifugation at 3000 rpm for 15 minutes (El-Desouky, 2021), while the second technique corresponds to traditional filtration through filter paper (Figure 2).

2.3 Parameters determination

Quantitative yield of the extract

This parameter is determined by referring to the method of Alghoraibi et al. (2020). 100 μ l of the extract was deposited on empty glass slide, and the weight was measured with a precision scale after evaporation under 35 C°. The extract yield was calculated relative to the weight of the powder used (5 g) as indicated below:

Yield of extact (%) =
$$\frac{\text{Weight of the sample of the obtained extract (g)} \times 100}{\text{Weight of the sample powder used (g)}}$$

Determination of total polyphenols content (TPC)

The method described by Moualek et al. (2016) was used to determine the content of polyphenols, using gallic acid as a standard and the Folin-Ciocalteu reagent. 1ml of Folin-Ciocalteu reagent and (diluted ten times) was added to a tube containing 200 μ l of aqueous extract. Then, after shaking the mixture for 3 minutes, 800 μ l of Na₂CO₃ (75 g/l) was added to the solution, and the tubes were incubated at 25 °C in the dark for 45 minutes. The assay was performed using a spectrometer, measuring the absorbance at 760 nm using Cary 60 UV-Vis spectrophotometer (Agilent, USA). The results are expressed as milligrams of gallic acid equivalents per one hundred g of extract (mg GAE/100 g of extract).

Antioxidant activity (%)

The method used to determine the antioxidant activity was recommended by Zemour et al. (2019) with slight modifications, and it is based on the spectrophotometric measurement of the reduction of the DPPH radical (2,2-diphényl 1-picrylhydrazyle). In this method, 200 μl of extract was mixed with 800 μl of pure methanol and 2 ml of DPPH (0.5 mg/1 ml in pure methanol). After 15 minutes of incubation, the assay was performed at an absorbance of 517 nm using Cary 60 UV-Vis spectrophotometer (Agilent, USA). The antioxidant activity of the extract was calculated using the following formula:

Antioxidant activity (%) = $[(Abs control - Abs sample) / Abs control] \times 100$

Determination of total flavonoid content

The total amount of flavonoids present in the leaf extract was determined using the aluminum chloride spectrophotometric assay according to Moualek et al. (2016). To perform this assay, 1 ml of the plant extract was mixed with 1ml of a methanolic solution containing 2 % aluminum trichloride (AlCl $_3$). The mixture was then incubated for 10 minutes, and the absorbance of the reaction mixture was measured at 430 nm, using Cary 60 UV-Vis spectrophotometer (Agilent, USA) and methanol as a blank reference. A standard curve of quercetin was used to convert the absorbance readings into milligrams of quercetin equivalent per 100 g of extract.

Statistical analysis

All analysis were performed in triplicate. The results were presented as mean ± SD (standard deviation). A two-factor analysis of variance (ANOVA II) was conducted to assess the effect of drying and extraction methods on the biochemical quality of aqueous extracts of the strawberry leaves. The used statistical software was OriginPro2022.

3. Results and discussion

3.1 Yield of extract

According to the Table 1, the drying method significantly influenced the yield of the obtained extract (p<0.05). However, there is no effect of the extraction method on this parameter (p>0.05).

Table 1. Analysis of variance of the yield, total phenolic content (TPC) antioxidant activity (AA) and the total flavonoid content (TFC) of Arbutus unedo leaves aqueous extract

Factors	<i>P</i> value				
	Yield of extract	TPC	AA	TFC	
Extraction (E)	0.119ns	0.135ns	0.000***	0.12ns	
Drying (D)	0.026*	0.039*	0.002**	0.11ns	
Interaction D*E	0.231ns	0.091ns	0.000***	0.16ns	

nsNon significant at p>0.05; * significant at p< 0.05; ** significant at p< 0.01; *** significant at p< 0.001

The results showed that high yields were obtained from samples maintained on drying in the shade and filtered (2.3 %). Indeed, drying at 60 °C resulted in average values, with a yield of approximately 2.21% for filtration and 2.24 % for centrifugation, compared to other drying methods. However, the samples dried at 40°C exhibited the lowest yield, with values of 2.08% for filtration and 1.62% for centrifugation. It appears that the amount of extract yield increased with increasing temperature and deceasing time. It can be suggested that quick drying through thermal drying preserved the phenolics and other constituents from degradation via microbial attacks and enzymatic processes, hence increasing the yield (Anwar et al., 2013; Vanielie et al., 2019). The results of Anwar et al. (2023) revealed that the extraction yield from cauliflower (*Brassica oleracea*) was higher after drying at 40°C. However, oven drying at 60°C provided the optimum extract yield for the leaves of *Scurrula ferruginea* (Vanielie et al., 2019). Additionally, the extraction method had a significant influence on the final extract yield (Tenuta et al., 2020).

Table 2. The yield, total phenolic content (TPC) antioxidant activity (AA) and the total flavonoid content (TFC) of Arbutus unedo leaves aqueous extract

Methods		Parameters				
Extraction	Drying	Yield of	TPC (mg GAE/	AA (%)	TFC (mg QE/100 g	
after maceration		extract (%)	100 g of extract)		of extract)	
Filtration	At 60°C	2.21±0.09a	380.60±13.86a	85.76±0.93c	326.58±17.04a	
	At 40°C	2.08±0.07a	391.77±16.83a	77.72±0.48d	334.35±12.71a	
	Sun-drying	2.20±0.01a	376.27±11.68a	81.60±0.75ab	339.28±1.28a	
	Shade-drying	2.31±0.03a	362.44±7.58a	82.57±1.17a	309.75±2.98a	
	Mean	2.19±0,03	377±6.35	81.91±0.94	327.49±5.7	

Continued Table 2...

Methods		Parameters				
Extraction	Drying	Yield of	TPC (mg GAE/100	AA (%)	TFC (mg QE/100 g	
after maceration		extract (%)	g of extract)		of extract)	
Centrifugation	At 60°C	2.24±0.03a	355.44±5.49a	85.00±0.42b	327.38±4.2a	
	At 40°C	1.62±0.34b	577.05±114.5b	90.81±0.06e	489.13±105.65a	
	Sun-drying	2.23±0.04a	372.58±13.79a	84.13±0.46abc	328.9±8.15a	
	Shade-drying	2.10±0.01a	393.41±11.40a	82.82±0.19abc	341.05±3.55a	
	Mean	2.05±0.1	424.61±36.5	85.69±0.93	371.41±30.5	

In same column means with the same letter are not significantly different at p > 0.05

3.2 Polyphenols total content (mg GAE/ 100 g extract)

The obtained results (Table 1) indicated that the polyphenols total content is affected by the drying method (p<0.05). According to the results (Table 2), the extreme values of TPC were obtained for the leaves dried at 60 °C using the filtration method, with average values around 355.44 (mg GAE/100 g of extract) and 577.05 (mg GAE/100 g of extract) for the samples dried at 40 °C using centrifugation method respectively. Moreover, during the drying process under shadow and sunlight, the examined strawberry tree leaf extract showed TPC values of 362.44 and 376.27 mg GAE/100 g of extract after filtration, respectively. Similarly, using the same drying methods, the TPC values were approximately 393.41 and 372.56 mg GAE/100 g of extract after centrifugation.

Polyphenolic compounds are the most prevalent secondary metabolites present in the natural world. They display a multitude of distinct properties and exert various biological effects (Bié et al. 2023). To recover the maximum quantity of these compounds for ensuring their functional properties, the use of appropriate extraction methods would be recommended. In this regard, several studies highlighted that the extraction method affect significantly the quantity and quality of the polyphenolic compounds (Shi et al. 2022; García-Ramón et al. 2023). This study revealed that the optimum TPC resulted from a drying temperature of 40° C. Here, García-Ramón et al. (2023) highlighted that when using 40° C, the unripe avocado peel extracts exhibited the highest values of TPC (44.24mg GAE/g peel dw), TFC (786.08mg QE/g peel dw) and antioxidant capacity (564.82 μ mTE/g peel dw).

According to our results, the extract of strawberry tree leaves showed significant levels of total polyphenols regardless of the drying and extraction methods used. Several studies have confirmed the importance of these compounds in this plant (Hmaidosh et al., 2020; Jurič et al., 2020; Erkekoglou et al., 2017; Bertsouklis et al., 2021). Therefore, the TPC was about 192 (mg GAE /g DW) and 836.51 (µg GAE/mg extract) in Algeria (Bakchiche et al., 2013; Laouicha et al., 2020), 32 (mg GAE/g DW) in Tunisia (Habachi et al., 2022) and 37.3 (g GAE/g of DW) in Morocco (Mrabti et al., 2017). A study conducted in Croatia revealed a composition ranging between 553 and 850 (mg GAE/100g DW). However, this phytochemical composition can vary depending on environmental conditions (Miguel et al., 2014; Zemour, 2022). The extraction method has been found to be influential. Indeed, the extract of *Arbutus unedo* L. leaves showed varying levels when using ethanol extraction or boiling water extraction (Mrabti et al., 2017). Furthermore, the drying method can affect the variation of total polyphenol accumulation (Roslan et al., 2020; Sahin et al., 2017). According to Zhang et al. (2009), thermal drying was found to facilitate the release of cell wall phenolics or bound phenolics by breaking down cellular components. As a result, this process led to an increased yield of the extract.

3.3 Antioxidant activity (DPPH Radical Scavenging Assay)

The antioxidant activity (Table 1) of the strawberry tree leaf extract varies depending on the drying and extraction methods (p<0.05). Thus, a high activity was observed for the extract obtained after drying the leaves at 40°C and recovered by centrifugation (90.81%), while the lowest activity (77.72 %) was recorded for leaves dried at a temperature of 40 °C and subjected to filtration after maceration. The average recorded antioxidant activity is approximately 81.91 % and 85.69 % for filtration and centrifugation, respectively. Oxidation is a chemical reaction that can produce free radicals, leading to chain reactions that can damage cells (Rassem et al., 2018; Chaudhary et al., 2023; Martemucci et al., 2022). This antioxidant activity has been previously reported in Arbutus unedo extract leaves by several scientific studies (Doudach et al., 2023; Ait lhaj et al., 2022; Habachi et al., 2022). Indeed, the maximum scavenging activity is about of 79.23 % (Moualek et al., 2016). Kachkoul et al. (2019) have founded that the aqueous extract of this species exerted a value of 202.64 µg/mL (IC₅₀). Strawberry tree components, particularly fruits and leaves, have been subjected to numerous and varied extraction procedures to obtain phenolics-rich fractions with high antioxidant power (Erdogan and Uysal, 2020; El Cadi et al., 2020; Lehfa et al., 2023). However, our research has revealed the effect of the drying method on the expression of this antioxidant activity, a finding consistent with other scientific studies (Złotek et al., 2021; Benjamin et al., 2022; Saifullah et al., 2019). In one of these studies it has been revealed that sun drying induced an increase in the antioxidant activity of bamboo extracts, with a higher value of 4.73 μg/mL compared to the lowest value estimated at 2.92 μg/mL, which was obtained through freeze-drying (Benjamin et al., 2022). Also, the DPPH radical scavenging activity exhibits higher value rather than at low temperatures (i.e. 50, 60 and 70°C) (Saifullah et al., 2019). It is interesting noted that Stephenus et al. (2023) revealed that the DPPH inhibition activity was higher when the drying temperatures were consistently increased from 40 to 50°C in *Phaleria macrocarpa* fruits extract.

3.4 Total flavonoid content (TFC)

The drying and filtration methods have no effect on the total flavonoid content of the studied extract (p>0.05). According to the results in Table 2, the estimation of flavonoid content revealed high values of 334.35 (mg QE/100 g of extract) and 489.13 (mg QE/100 g of extract) for the aqueous extract of leaves dried at 40 °C and extracted by filtration and centrifugation, respectively.

After filtration, the lowest flavonoid value is recorded for the batch dried in the shade (309.75 mg QE/100 g of extract). Similarly, after drying the leaves at 60°C and subjecting them to centrifugation after maceration, the flavonoid content remains low (327.38 mg QE/100 g of extract) compared to the other drying methods. As expected, this study highlighted the high amount of the flavonoid in this species. Previous study confirmed these results (Tenuta et al., 2020; Moualek et al., 2016). It has been demonstrated that these values may varies according to the extraction method (Tenuta et al., 2020). Generally, drying at 60°C could contribute to a decrease in the flavonoid content of the extracts. Sharma et al. (2015) and Stephenus et al. (2023) also suggested that this condition might be due to the degradation of flavonoids, as a result of the increased temperature.

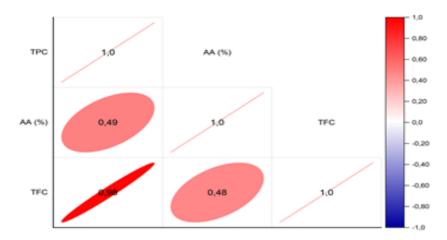


Figure 3. Correlation between TPC, AA and TFC

According to Figure 3, a strong positive correlation was revealed between TPC and TFC (R=0.98). However, the TPC and TFC R-values of the Pearson correlation coefficient for the DPPH were 0.49 and 0.48 respectively. These positive correlations have been pointed up by numerous studies (Pande et al., 2018; Muflihah et al., 2021).

4. Conclusion

Algeria is one of the countries characterized by the richness and diversity of its flora, which plays a crucial role as a vast phylogenetic reservoir. For this reason, the study of its medicinal and nutritional importance remains of paramount importance. Therefore, the objective of this study was to evaluate the biological activity of the aqueous extract of *Arbutus unedo* L. leaves growing in the province of Tissemsilt (Western Algeria). The main parameters studied focused on the total polyphenol content (TPC) and its conjugated antioxidant activity (DPPH) and total flavonoid content (TFC). The results obtained revealed the richness of this species in polyphenols. It was demonstrated that the aqueous extract of strawberry leaves exhibited strong free radical reducing activity. This study also aimed to examine the effect of the drying method and the extraction method after maceration. It was found that the above parameters were influenced by the drying and extraction methods studied. In conclusion, due to its biological activity, this plant could play an important role in traditional and modern uses. Therefore, its use in nutritional, pharmaceutical, and cosmetic fields is recommended. On the other hand, drying at a temperature of 40°C and centrifugation are essential steps that could play a critical role in conducting scientific research involving an aqueous plant extract.

Acknowledgement

We would like to thank the Dean of the faculty and all the personnel of the Laboratory of the Faculty of Sciences and Technology at Tissemsilt University (Algeria).

Author's declaration

The authors declare no conflict of interest.

ZK, CKMA, ATA and LM carried out laboratory work and analysed data. ZK, LA, MM, MB and ZH advised about the laboratory technique and conducted manuscript proofreading before submission. All authors read and approved the final version of the manuscript.

References

- Abebe, A., Hilawea, K. T., Mekonnen, A., Tigineh, G. T., Sitotaw, B., Liyew, M., & Wubieneh T.A. (2022). Assessment on antioxidant activity of the aqueous leaf extracts of *Combretum microphyllum* and the effect of Co (II)-leaf extract complex on antibacterial activity of leaf extracts of the plant material. *Scientific African*, 18, e01432. CrossRef
- Abidi, E., Habib, J., Yassine, A., Chahine, N., Mahjoub, T., & Elkak A. (2016). Effects of methanol extracts from roots, leaves, and fruits of the Lebanese strawberry tree (*Arbutus andrachne*) on cardiac function together with their antioxidant activity. *Pharmaceutical Biology*, 54(6), 1035-1041. CrossRef
- Ahdaa, M., Jaswirb, I., Khatibd, A., Ahmed, Q. E., Mahfudha, N., & Ardini, Y.D. (2023). A review on selected herbal plants as alternative anti-diabetes drugs: chemical compositions, mechanisms of action, and clinical study. *International journal of food properties*, 26(1), 1414–1425. CrossRef
- Ait lhaj, Z., Taghzouti, K., Bouyahya, A., Diria, G., Bakhy, K., & Bchitou R. (2022). Phenolic composition and antioxidant activity of leaves of strawberry tree (*Arbutus unedo* L.) populations from Morocco. *Phytothérapie*, 20(4-5), 192–204. CrossRef
- Alghoraibi, I., Soukkarieh, C., Zein, R., Alahmad, A., Walter, J.G., & Daghestani, M. (2020). Aqueous extract of Eucalyptus camaldulensis leaves as reducing and capping agent in biosynthesis of silver nanoparticles. *Inorganic and Nano-Metal Chemistry*, 50(10), 1–8. CrossRef
- Anwar F., Kalsoom U., Sultana B., Mushtaq M., Mehmood T., & Arshad H. A. (2013). Effect of drying method and extraction solvent on the total phenolics and antioxidant activity of cauliflower (*Brassica oleracea* L.) extracts. *International Food Research Journal*, 20(2), 653-659. <u>Direct Link</u>.
- Ateş, U., Karakaya, O., Çelik, S.M., & Faizy, A.H. (2022). Bioactive compounds of strawberry tree (*Arbutus unedo* L.) genotypes grown in the East Black Sea and Marmara region. *Turkish Journal of Food and Agriculture Sciences*, 4 (2), 29-33. CrossRef
- Baibuch, S., Zema, P., Bonifazi, E., Cabrera, G., Mondragón Portocarrero, A. D. C., Campos, C., & Malec, L. (2023). Effect of the drying method and optimization of extraction on antioxidant activity and phenolic of rose petals. *Antioxidants*, 12(3), 681. CrossRef
- Bafandeh, S., Khodadadi, E., Ganbarov, K., Asgharzadeh, M., Köse, S., & Samadi Kafil, H. (2023). Natural products as a potential source of promising therapeutics for COVID-19 and viral diseases. *Evidence-Based Complementary and Alternative Medicine*, 2023, 5525165 CrossRef
- Bakchiche, B., Gherib, A., Smail, A., Custódia, G., & Graça, M. M. (2013). Antioxidant activities of eight Algerian plant extracts and two essential oils. *Industrial Crops and Products*, 46: 85–96. CrossRef
- Bebek Markovinovi'c, A., Br'ci'c Kara'conji, I., Jurica, K., Lasi'c, D., Skendrovi'c Babojeli'c, M., Duralija, B., Šic Žlabur, J., Putnik, P., & Bursa'c Kova'cevi'c, D. (2022). Strawberry tree fruits and leaves (*Arbutus unedo* L.) as raw material for sustainable functional food processing: a review. *Horticulturae*, 8(10), 881. CrossRef
- Benjamin, M. A. Z., Ng, S. Y., Saikim, F. H., & Rusdi, N. A. (2022). The effects of drying techniques on phytochemical contents and biological activities on selected bamboo leaves. *Molecules*, 27(19), 6458. CrossRef
- Bertsouklis, K. F., Daskalakis, I., Biniari, K., & Papafotiou, M. (2021). Comparative study of polyphenolic content and antioxidant capacity in fruits of *Arbutus unedo, A. andrachne* and their natural hybrid *A.× andrachnoides*. *Notulae Botanicae Horti Agrobotanici Cluj-Napoca*, 49(1), 12165. CrossRef
- Bié, J., Sepodes, B., Fernandes, P.C.B. & Ribeiro, M.H.L. (2023). Polyphenols in health and disease: gut microbiota, bioaccessibility, and bioavailability. *Compounds* 3(1), 40-72. <u>CrossRef</u>

- Chaikhong, K., Chumpolphant, S., Rangsinth, P., Sillapachaiyaporn, C., Chuchawankul, S., Tencomnao, T., & Prasansuklab, A. (2023). Antioxidant and anti-skin aging potential of selected Thai plants: In vitro evaluation and in silico target prediction. *Plants*, 12(1), 65. <u>CrossRef</u>
- Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D., & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. *Frontiers in Chemistry*, 11, 1158198. CrossRef
- Cör Andrejc, D., Butinar, B., Knez, Ž., Tomaži c, K., & Knez Marevci, M. (2022). The effect of drying methods and extraction techniques on oleuropein content in olive leaves. *Plants (Basel)*, 11(7), 865. <u>CrossRef</u>
- Doudach, L., Naceiri Mrabti, H., Al-Mijalli, S. H., Kachmar, M. R., Benrahou, K., Assaggaf, H., Qasem, A., Abdallah, E. M., Rajab, B. S., Harraqui, K., Mekkaoui, M., Bouyahya, A., & El Abbes Faouzi, M. (2023). Phytochemical, antidiabetic, antioxidant, antibacterial, acute and sub-chronic toxicity of moroccan *Arbutus unedo* leaves. *Journal Pharmacopuncture*, 26(1), 27-37. CrossRef
- Dutta, A. K., Gazi, M. S., & Uddin, S. J. (2023). A systemic review on medicinal plants and their bioactive constituents against avian influenza and further confirmation through in-silico analysis. *Heliyon*, 9, e14386. CrossRef
- El Cadi, H., El Cadi, A., Kounnoun, A., Oulad El Majdoub, Y., Palma, L. M., Brigui, J., Dugo, P., Mondello, L., & Cacciola, F. (2020). Wild strawberry (*Arbutus unedo*): Phytochemical screening and antioxidant properties of fruits collected in northern Morocco. *Arabian Journal of Chemistry*, 13(8), 6299-6311. CrossRef
- El-Desouky, T. A. (2021). Evaluation of effectiveness aqueous extract for some leaves of wild edible plants in Egypt as anti-fungal and anti-toxigenic. *Heliyon*, 7(2), e06209. CrossRef
- El Gamal, R., Song, C., Rayan, A. M., Liu, C., Al-Rejaie, S., & ElMasry, G. (2023). Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: A comprehensive overview. *Agronomy*, 13(6), 1580. <u>CrossRef</u>
- El Mekkaoui, A., Khamar, M., Slimani, C., Nounah, A., Cherkaoui, E., Benradi, F., & Chaimae Raisi, C. (2023). Phytochemical studies and in vitro evaluation of the antioxidant activity of some medicinal and aromatic plants from Morocco. *Notulea Scitia Biologicae*, 15(1), 11423. CrossRef
- El Zerey-Belaskri, A., Belyagoubi-Benhammou, N., & Benhassaini, H. (2022). From traditional knowledge to modern formulation: potential and prospects of *Pistacia atlantica* desf. essential and fixed oils uses in cosmetics. *Cosmetics*, 9(6), 109. <u>CrossRef</u>
- Erdogan, G., & Uysal, T. (2020). Characterization of antioxidant properties of strawberry tree (*Arbutus unedo* L.) and trace elements determination. *Journal of Research in Pharmacy*, 24(5), 774–785. CrossRef
- Erkekoglou, I., Nenadis, N., Samara, E., & Mantzouridou, F. T. (2017). Functional teas from the leaves of *Arbutus unedo*: phenolic content, antioxidant activity, and detection of efficient radical scavengers. *Plant Foods for Human Nutrition*, 72(2), 176-183. CrossRef
- Frimpong, E. K., Asong, J. A., & Aremu, A. O. (2021). A review on medicinal plants used in the management of headache in Africa. *Plants*, 10(10), 2038. <u>CrossRef</u>
- García-Ramón, F., Malnati-Ramos, M., Rios-Mendoza, J., Vivar-Méndez, J., Nieva-Villegas, L.M., Cornelio-Santiago, H.P., Sotelo-Méndez, A. (2023). Avocado Hass peel from industrial by-product: effect of extraction process variables on yield, phenolic compounds and antioxidant capacity. *Frontiers in Sustainable Food Systems*, 7:1255941. CrossRef
- Guclu, G., Keser, D., Kelebek, H., Keskin, M., Emre Sekerli, Y., Soysal, Y., & Selli, S. (2021). Impact of production and drying methods on the volatile and phenolic characteristics of fresh and powdered sweet red peppers. *Food Chemistry*, 338, 128129. CrossRef
- Habachi, E., Rebey, I. B., Dakhlaoui, S., Hammami, M., Sawsen, S., Msaada, K., Merah, O., & Bourgou, S. (2022). *Arbutus unedo*: Innovative source of antioxidant, anti-inflammatory and anti-tyrosinase phenolics for novel cosmeceuticals. *Cosmetics*, 9(6), 143. <u>CrossRef</u>
- Haris, A., Nawan, N. A., Mei, C. A. L., Sani, S. A., & Najm, S. U. F. S. (2023). Medicinal plant applications as traditional and complementary medicine by sabah ethnicities and the regulations and

- economic view in Malaysia's healthcare industry: A mini review. *Pharmacognosy Reviews*, 17(33), 1-10. CrossRef
- Hmaidosh D., Ali M., & Salame R. (2020). Evaluation of antioxidant activity and the phenolic composition of Syrian *Arbutus andrachne* L. *Future of Food: Journal on Food, Agriculture and Society*, 8 (3): 1-7. <u>Direct Link.</u>
- Jurič A., Gašić U., Karačonji I.B., Jurica K., & Milojković-Opsenica D. (2020). The phenolic profile of strawberry tree (*Arbutus unedo* L.) honey. *Journal of the Serbian Chemical Society*, 85 (8): 1011–1019. <u>Direct Link.</u>
- Kachkoul, R., Squalli Housseini, T., Mohim, M., El Habbani, R., Miyah, Y., & Lahrichi, A. (2019). Chemical compounds as well as antioxidant and litholytic activities of *Arbutus unedo* L. leaves against calcium oxalate stones. *Journal of integrative medicine*, 17(6):430–437. CrossRef
- Kim, Y.J. & Kang, K.S. (2023). The phytochemical constituents of medicinal plants for the treatment of chronic inflammation. *Biomolecules*, 13, 1162. <u>CrossRef</u>
- Kumar, A.P.N., Kumar, M., Jose, A., Tomer, V., Oz, E., Proestos, C., Zeng, M., Elobeid, T.K.S., & Oz, F. (2023). Major phytochemicals: recent advances in health benefits and extraction method. Molecules. 28(2):887. CrossRef
- Labdelli, A., Zemour, K., Simon, V., Cerny, M., Adda, A., & Merah, O. (2019). *Pistacia atlantica* Desf., a source of healthy vegetable oil. *Applied Sciences*, 9(12), 2552. <u>CrossRef</u>
- Lang, H. G., Lindemann, J. S., Ferreira, D. C., Hoffmann, J. F., Vanier, N. L., & de Oliveira, M. (2019). Effects of drying temperature and long-term storage conditions on black rice phenolic compounds. *Food Chemistry*, 287, 197–204. CrossRef
- Laouicha S., Senator A., Kherbache A., & Bouriche H. (2020). Total phenolic contents and antioxidant properties of Algerian *Arbutus unedo* L. extracts. *Journal of Drug Delivery and Therapeutics*, 10(3-s): 159-168. CrossRef
- Lee, S. Y., Ferdinand, V., & Siow, L. F. (2022). Effect of drying methods on yield, physicochemical properties, and total polyphenol content of chamomile extract powder. *Frontiers Pharmacology*, 13, 1003209. CrossRef
- Lehfa, F., Belkhodja, H., & Sahnouni, F. (2023) Phytochemical screening, antioxidant and anti-in-flammatory activities of polyphenolic extracts of strawberry-tree fruits (*Arbutus unedo* L). *Journal of Applied Biotechnology Reports*, 10(2), 992-999. CrossRef
- Lenzi, M., Turrini, E., Catanzaro, E., Cocchi, V., Guerrini, A., Hrelia, P., Gasperini, S., Stefanelli, C., Abdi Bellau, M. L., Pellicioni, V., Tacchini, M., Greco, G., & Fimognari, C. (2022). In vitro investigation of the anticancer properties of *Ammodaucus Leucotrichus* Coss. & Dur. *Pharmaceuticals*, 15(12), 1491. CrossRef
- Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P., & D'Alessandro, A. G. (2022). Free radical properties, source and targets, antioxidant consumption and health. *Oxygen*, 2(2), 48–78. CrossRef
- Miguel, M. G., Faleiro, M. L., Guerreiro, A. C., & Antunes, M. D. (2014). *Arbutus unedo* L.: chemical and biological properties. *Molecules*, 19(10), 15799–15823. CrossRef
- Morales, D. (2022). Use of strawberry tree (*Arbutus unedo*) as a source of functional fractions with biological activities. *Foods*, 11(23), 3838. <u>CrossRef</u>
- Morgado, S., Morgado, M., Plácido A. I., Roque, F., & Duarte, A. P. (2018). *Arbutus unedo* L.: From traditional medicine to potential uses in modern pharmacotherapy. *Journal of Ethnopharmacology*, 225, 90-102. <u>CrossRef</u>
- Moualek, I., Iratni, A.G., Mestar, G.N., Souad, L., & Houali, K. (2016). Antioxidant and anti-inflammatory activities of *Arbutus unedo* aqueous extract. *Asian Pacific Journal of Tropical Biomedicine*, 6(11), 933-944. CrossRef
- Mrabti H.N., Marmouzi I., Sayah K., Chemlal L., El Ouadi Y., Elmsellem H., Cherrah Y., & Faouzi M.A. (2017). *Arbutus unedo* L. aqueous extract is associated with in vitro and in vivo antioxidant activity. *Journal of materials and Environmental Sciences*, 8(1): 217–224. <u>Direct Link.</u>

- Muflihah, Y. M., Gollavelli, G., & Ling, Y. C. (2021). Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. *Antioxidants*, 10(10), 1530. CrossRef
- Nafeh, G., Abi Akl, M., Samarani, J., Bahous, R., Al Kari, G., Younes, M., Sarkis, R., Rizk, S. (2023). Urtica dioica leaf infusion enhances the sensitivity of triple-negative breast cancer cells to cisplatin treatment. Pharmaceuticals, 16, 780. CrossRef
- Nisar, B., Sultan, A., & Rubab, S. (2018). Comparison of medicinally important natural products versus synthetic drugs-A short commentary. *Natural Products Chemistry & Research*, 6, 2. CrossRef
- Nurhaslina, C. R., Andi Bacho, S., & Mustapa, A. N. (2022). Review on drying methods for herbal plants. *Materials Today: Proceedings*, 63(1), S122-S139. CrossRef
- Pacheco-Hernández, Y., Villa-Ruano, N., Lozoya-Gloria, E., Barrales-Cortés, C. A., Jiménez-Montejo, F. E., & Cruz-López, M. D. C. (2021). Influence of environmental factors on the genetic and chemical diversity of *Brickellia veronicifolia* populations growing in fragmented shrublands from Mexico. *Plants*, 10(2), 325. CrossRef
- Pande H., Kumar B., & Varshney V.K. (2018). HPLC-ESI-QTOF-MS analysis of phenolic compounds, antioxidant capacity and α -glucosidase inhibitory effect of *Bambusa nutans* leaves. *Indian Journal of Chemistry*, 57B(7): 988–996. <u>Direct Link.</u>
- Rassem H.H., Nour A.H., & Yunus R.M. (2018). Biological activities of essential oils-A review. *Pacific International Journal*, 01 (2): 1-14.
- Roslan, A. S., Ismail, A., Ando, Y., & Azlan, A. (2020). Effect of drying methods and parameters on the antioxidant properties of tea (*Camellia sinensis*). Food Production, Processing and Nutrition, 2, 8. CrossRef
- Şahin, S., Elhussein, E., Bilgin, M., Lorenzo, J. M., Barba, F. J., & Roohinejad, S. (2017). Effect of drying method on oleuropein, total phenolic content, flavonoid content, and antioxidant activity of olive (*Olea europaea*) leaf. *Journal of Food Processing and Preservation*, 42(5), e13604. Cross-Ref
- Saifullah, M., McCullum, R., McCluskey, A., & Vuong, Q. (2019). Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. *Heliyon*, 5(12), e03044. CrossRef
- Santos, A. E., Aguiar, G. P. S., Dal Magro, C., Lacowicz, R. A., Fedrigo, I. M. T., Bordignon-Luiz, M. T. Oliveira, J. V., & Lanza, M. (2022). Impact of drying method as pretreatment for extraction of bioactive compounds from jambolan (*Syzygium cumini* (L.) Skeels). *Brazilian Journal of Food Technology*, 25, e2021055. CrossRef
- Scarano, P., Guida, R., Zuzolo, D., Tartaglia, M., Prigioniero, A., Postiglione, A., Pinto, G., Illiano, A., Amoresano, A., Schicchi, R., Geraci, A., Sciarrillo, R., & Guarino, C. (2022). An endemic plant of the mediterranean area: phytochemical characterization of strawberry tree (*Arbutus unedo* L.) fruits extracts at different ripening Stages. *Frontiers in Nutrition*, 9, 915994. CrossRef
- Senouci, F., Ababou, A., & Chouieb, M. (2019). Ethnobotanical survey of the medicinal plants used in the southern mediterranean. Case study: the region of bissa (Northeastern Dahra Mountains, Algeria). *Pharmacognosy Journal*, 11(4), 647-59. CrossRef
- Sharma, K., Ko, E. Y., Assefa, A. D., Ha, S., Nile, S. H., Lee, E. T. & Park, S. W. (2015). Temperature-dependent studies on the total phenolics, flavonoids, antioxidant activities, and sugar content in six onion varieties. *Journal of Food and Drug Analysis*, 23(2), 243–252. CrossRef
- Shi, L., Zhao, W., Yang, Z., Subbiah, V., Suleria, H.A.R. (2022). Extraction and characterization of phenolic compounds and their potential antioxidant activities. *Environmental Science and Pollution Research*, 29(54), 81112-81129. CrossRef
- Singhal, S., Rasane, P., Kaur, S., Singh, J., & Gupta, N. (2020). Thermal degradation kinetics of bioactive compounds in button mushroom (*Agaricus bisporus*) during tray drying process. *Journal of Food Process Engineering*, 43(12), e13555. CrossRef

- Sousa, M. N., Macedo, A. T., Ferreira, G. F., Furtado, H. L. A., Pinheiro, A. J. M. C. R., Lima-Neto, L. G., Fontes, V. C., Ferreira, R. L. P. S., Monteiro, C. A., Falcai, A., Gomes, L. N., Bragança, Q. D. S. R., Torres, D. D. S. B., Galvão, L. C. D. C., Holanda, R. A., & Santos, J. R. A. (2022). Hydroalcoholic leaf extract of *Punica granatum*, alone and in combination with calcium hydroxide, is effective against mono- and polymicrobial biofilms of *Enterococcus Faecalis* and *Candida Albicans*. *Antibiotics*, 11(5), 584. CrossRef
- Sun, W., & Shahrajabian, M. H. (2023). Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. *Molecules*, 28(4):1845. CrossRef
- Stephenus, F. N., Benjamin, M. A. Z., Anuar, A. & Awang, M. A. (2023). Effect of temperatures on drying kinetics, extraction yield, phenolics, flavonoids, and antioxidant activity of *Phaleria macrocarpa* (Mahkota Dewa) fruits. *Foods*, 12(15), 2859. CrossRef
- Tenuta, M. C., Tundis, R., Xiao, J., Loizzo, M. R., Dugay, A., & Deguin, B. (2019). Arbutus species (Ericaceae) as source of valuable bioactive products. *Critical Reviews in Food Science and Nutrition*, 59(6), 864-881. <u>CrossRef</u>
- Tenuta, M. C., Deguin, B., Loizzo M. R., Dugay, A., Acquaviva, R., Malfa, G. A., Bonesi, M., Bouzidi, C., & Tundis, R. (2020). Contribution of flavonoids and iridoids to the hypoglycaemic, antioxidant, and nitric oxide (no) inhibitory activities of *Arbutus unedo* L. *Antioxidants* (Basel), 9(2), 184. CrossRef
- Tirado-Kulieva, V. A., Hernandez-Martinez, E., & Choque-Rivera, T.J. (2022). Phenolic compounds versus SARS-CoV-2: An update on the main findings against COVID-19. *Heliyon*, 8, e10702. CrossRef
- Vanielie, T. J., Muskhazli, M., Sulaiman, S. K. & Rusea, G. (2019). Effect of drying methods and extraction solvents on phenolic antioxidants and antioxidant activity of *Scurrula ferruginea* (Jack) Danser (Loranthaceae) leaf extract. *Sains Malaysiana*, 48(7), 1383–1393. CrossRef
- Wanga, L., & Nyamboki, D. K. (2023). Medicinal plants used in the management of skin disorders in Kenya: A Review. *Pharmacognosy Reviews*, 17(33), 69-103. CrossRef
- Yazan, R., Mohd Fadzelly, A., Nur Amalina, I., Faridah, K., Maryati, M., Abdah, M. A. & Azizul, I. (2021). Anti-aging and antioxidant of four traditional malaysian plants using simplex centroid mixture design approach. *Saudi Journal of Biological Sciences*, 28(12), 6711-6720. CrossRef
- Youssef, F. S., Ramadan, M. F., Echeverria Moran, V., Aremu, A. O., & Mamadalieva, N. Z. (2022). Editorial: Potential of natural products as drug leads possessing antioxidant and anti-aging properties. *Frontiers in Pharmacology*, 13, 1094950. <u>CrossRef</u>
- Zemour, K., Labdelli, A., Adda, A., Dellal, A., Talou, T., & Merah, O. (2019). Phenol content and antioxidant and antiaging activity of safflower seed oil (*Carthamus tinctorius* L.). *Cosmetics*, 6(3), 55. <u>CrossRef</u>
- Zemour, K., Adda, A., Labdelli, A., Dellal, A., Cerny, M., & Merah, O. (2021). Effects of genotype and climatic conditions on the oil content and its fatty acids composition of *Carthamus tinctorius* L. seeds. *Agronomy*, 11(10), 2048. <u>CrossRef</u>
- Zemour, K. (2022). Study of tolerance to water deficit and heat stress in safflower (Carthamus tinctorius L.) and their effects on oil yield and quality. (published doctoral thesis), University of Tiaret, Algeria and INP of Toulouse, France. (in French language)
- Zhang, Z., Lv, G., Pan, H., Wu, Y., & Fan, L. (2009). Effects of different drying methods and extraction condition on antioxidant properties of Shiitake (*Lentinus edodes*). *Food Science and Technology Research*, 15(5), 547-552. <u>CrossRef</u>
- Złotek, U., Lewicki, S., Markiewicz, A., Szymanowska, U., & Jakubczyk, A. (2021). Effects of drying methods on antioxidant, anti-inflammatory, and anticancer potentials of phenolic acids in lovage elicited by jasmonic acid and yeast extract. *Antioxidants*, 10(5), 662. CrossRef

47