Main Article Content

Abstract

Vegetable waste, one of which is cabbage waste, has long been recognized as a cause of a significant environmental problems in traditional markets and must be addressed. However, cabbage waste can be used as an alternative energy source through the Microbial Fuel Cell process. The purpose of this study was to determine the potential of cabbage waste as a producer of bioelectricity and the storage time of cabbage waste that produces the largest bioelectricity using Microbial Fuel Cells. This research was conducted in February 2022 at Laboratory of Microbiology and Botany, Universitas Siliwangi. The study employed a completely randomized design (CRD), with treatment consisting of a control group (without storage), five storage treatments, namely: treatment 1 (2 days storage), treatment 2 (4 days storage), treatment 3 (6 days storage), treatment 4 (eight days storage), and treatment 5 (10 days storage). All treatments were repeated 4 times. A digital multimeter is used to determine the resulting electric current.  The results indicated that the highest average total electric current generated was 0.022 mA from the 4 days storage treatment. The lowest average total electric current generated was 0.010 mA from the 10th days storage. These data indicate that the treatment of storage time of up to 4 days can increase the amount of electric current generated, then it decreases with increasing length of storage. It is influenced by several variables, including the growth phase of the bacterium, the availability of organic molecules, and the population of bacterium.

Article Details

How to Cite
Meylani, V., Nurfauziah, E., & Hernawati, D. (2022). Analysis of bioelectric potential of cabbage waste (Brassica oleraceae var. capitata) using microbial fuel cells. Journal of Agriculture and Applied Biology, 3(2), 70-76. Retrieved from https://jaabjournal.org/index.php/jaab/article/view/218

References

Agustina, N. (2016). Pemanfaatan Brassica oleracea menjadi pupuk cair organik dengan cara fermentasi (variabel rasio bahan baku dan lama waktu fermentasi). Jurnal Inovasi Proses, 1(2), 80–85.
Aliya, H., Maslakah, N., Nurampi, T., Buana, A. P., & Hasri, Y. N. (2016). Pemanfaatan asam laktat hasil fermentasi limbah kubis sebagai pengawet anggur dan stroberi. Bioedukasi: Jurnal Pendidikan Biologi, 9(1), 23–28. CrossRef
Angenent, L. T., Karim, K., Al-Dahhan, M. H., Wrenn, B. A., & Domíguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 22(9), 477–485. CrossRef
Anisah, & Rahayu, T. (2015). Media alternatif untuk pertumbuhan bakteri menggunakan sumber karbohidrat yang berbeda. In A. Saputra (Ed.), Seminar Nasional XII Pendidikan Biologi FKIP UNS: Biologi, Sains, Lingkungan, dan Pembelajarannya (pp. 855–860). Indonesia: Universitas Sebelas Maret. Direct Link.
Arbianti, R., Utami, T. S., Hermansyah, H., Novitasari, D., Kristin, E., & Trisnawati, I. (2013). Performance optimization of microbial fuel cell (MFC) using Lactobacillus bulgaricus. MAKARA Journal of Technology Series, 17(1), 32–38. CrossRef
Asgar, A., & Musaddad, D. (2006). Optimalisasi cara, suhu, dan lama blansing sebelum pengeringan kubis. Jurnal Hortikultura, 16(4), 83054. CrossRef

Ayuningtyas, G., Dwi Pratiwi, R., & Yulianti, A. (2020). Pemilahan sampah metode 3R sebagai upaya peningkatan kesehatan lingkungan di Cluster Casablanca Bukit Dago. Jurnal Abdi Masyarakat, 1(1), 86–92.
Bajracharya, S., Sharma, M., Mohanakrishna, G., Dominguez Benneton, X., Strik, D. P. B. T. B., Sarma, P. M., & Pant, D. (2016). An overview on emerging bioelectrochemical systems (bess): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renewable Energy, 98, 153–170. CrossRef
Darmawan, M. D., Hawa, L. C., & Argo, B. D. (2018). Performance of microbial fuel cell double chamber using mozzarella cheese whey substrate. IOP Conference Series: Earth and Environmental Science, 131(1), 1–6. CrossRef
Das, S., & Mangwani, N. (2010). Recent developments in microbial fuel cells : a review. Journal of Scientific & Industrial Research, 69, 727–731.
Fadillah, M., Sukma, D., & Nurhalim. (2015). Analisis prakiraan kebutuhan energi listrik tahun 2015-2024 wilayah PLN kota Pekanbaru dengan metode gabungan. Jurnal Online Mahasiswa Bidang Sais dan Teknologi, 2(2), 1–10.
Franks, A. E., & Nevin, K. P. (2010). Microbial fuel cells, a current review. Energies, 3, 899–919. CrossRef
Guerrero-R, N., Rodriguez-, J. A., Garza-Garc, Y., Rios-Gonza, L. J., Sosa-Santi, G. J., Garza-Rodr, I. M. de la, Martinez-A, S. Y., Rodriguez-, M. M., & Rodriguez-, J. (2010). Comparative study of three cathodic electron acceptors on the performance of medatiorless microbial fuel cell. International Journal of Electrical and Power Engineering, 4(1), 27–31. CrossRef
Haerani, D., Syafrudin, & Sasongko, S. (2019). Pengelolaan Sampah Di Kota Tasikmalaya. In A. Saputra (Ed.), Proceeding Biology Education Conference: Biology, Science, Environment, and Learning (pp. 266–274). Indonesia: Universitas Sebelas Maret. Direct Link.
Kurnianingsih, I., Rosini, R., & Ismayati, N. (2017). Upaya peningkatan kemampuan literasi digital bagi tenaga perpustakaan sekolah dan guru di wilayah Jakarta Pusat melalui pelatihan literasi informasi. Jurnal Pengabdian Kepada Masyarakat, 3(1), 61. CrossRef
Lee, S. W., Jeon, B. Y., & Park, D. H. (2010). Effect of bacterial cell size on electricity generation in a single-compartmented microbial fuel cell. Biotechnology Letters, 32(4), 483–487. CrossRef
Liu, H., Cheng, S., & Logan, B. E. (2005). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science and Technology, 39(2), 658–662. CrossRef
Nagong, A. (2020). Studi tentang pengelolaan sampah oleh dinas lingkungan hidup kota Samarinda Ber-dasarkan peraturan daerah kota Samarinda No-mor 02 Tahun 2011 tentang pengelolaan sampah. Jurnal Administrative Reform, 8(2), 105. CrossRef
Nurhajati, T., Soepranianondo, K., & Lokapirnasari, W. P. (2016). Uji aktivitas pertumbuhan Enterobacter cloacae selulolitik aerob rumen-1 isolat asal limbah cairan rumen sapi peranakan ongole. Jurnal Veteriner, 17(3), 383–388. CrossRef
Parinduri, L., & Parinduri, T. (2020). Konversi biomassa sebagai sumber energi terbarukan. Journal of Electrical Technology, 5(2), 88–92.
Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298. CrossRef
Rusad, R. E., & Santosa, S. (2016). Pemanfaatan limbah sayur kubis (Brassica oleracea) dan buah pepaya (Carica papaya) sebagai pakan cacing tanah Lumbricus rubellus. Jurnal Biologi, 1, 8–15.
Sayuti, I., Yustina, & Hardianti, N. (2016). Identifikasi bakteri pada sampah organik pasar kota Pekanbaru dan potensinya sebagai rancangan lembar kerja siswa (LKS) biologi sma. Jurnal Biogenesis, 13(1), 51–60.
Scott, K., Yu, E. H., Ghangrekar, M. M., Erable, B., & Duteanu, N. M. (2012). Biological and microbial fuel cells. Comprehensive Renewable Energy, 4, 277–300. CrossRef
Sekrecka-Belniak, A., & Toczyłowska-Maminska, R. (2018). Fungi-based microbial fuel cells. Energies, 11, 1–18. CrossRef
Sistem Informasi Pengelolaan Sampah Nasional. (2020). Data pengelolaan sampah dan RTH. SIPSN. Direct Link.
Siswanto, D. (2019). Indonesia energy outlook . DEN. Direct Link.
Sutrisno, J. (2010). Pembuatan biogas dari bahan sam-pah sayuran (kubis, kangkung, dan bayam). Jurnal Teknik Universitas PGRI Adi Buana, 8(1), 100–112. CrossRef
Utama, C. ., & Mulyanto, A. (2009). Potensi limbah pasar sayur menjadi starter fermentasi. Jurnal Kesehatan, 2(1), 6–13.