Main Article Content

Abstract

Conventional lowland rice cultivation involves flooding the paddy from planting to close to harvest, and high N fertilization. This practice leads to large amount of methane emissions. We studied the effect of soil water regime control on methane gas emissions and growth of several rice varieties on clayey soil. The experiment was arranged according to Split Plot Design. The main plot was water regime, i.e. continuous flooding (2-cm inundation), and intermittent flooding (flooded 2 cm then allowed to dry until the soil started to cracks). The sub-plots consisted of 3 rice varieties, i.e. Inpari 32, Mekongga, and Cisadane. Together, there were six treatment combinations, repeated 4 times. We measured methane emission, plant height, number of tillers per clump, number of productive tillers, and root volume. We computed analysis of variance, then performed Duncan Multiple Range Test. We found, at 57 and 73 days after planting, continuous flooding resulted in much (statistically) higher methane gas emissions than intermittent flooding (about 2 times greater for both Inpari and Cisadane, and 5 times greater for Mekongga). The two water regimes examined did not result in differences in plant height, number of tillers, productive tillers and root volume of the three varieties, although the flooded treatment tended to slightly give taller plant, more tillers and productive tillers. In conclusion, intermittent flooding significantly suppresses methane emission compared to continuous flooding. However, certain rice variety produces more methane than others. While intermittent flooding reduced methane emission, it did not statistically affect rice growth compared to continuous flooding.

Article Details

How to Cite
Kaharuddin, K., Gusli, S., Jayadi, M., Dachlan, A., & Ilham, A. M. (2022). Methane emission and rice growth on clayey soil under controlled water regime. Journal of Agriculture and Applied Biology, 3(2), 118-126. https://doi.org/10.11594/jaab.03.02.05

References

Ali, A., and O. Erenstein. (2017). Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Climate Risk Management, 16, 183–194. CrossRef
Haque, Md M., G. W. Kim, P. J. Kim, and S. Y. Kim. (2016). Comparison of net global warming potential between continuous flooding and midseason drainage in monsoon region paddy during rice cropping. Field Crops Research, 193, 133–142. CrossRef
Husna, Y. dan Ardian. (2010). Pengaruh penggunaan jarak tanam terhadap pertumbuhan dan produksi padi sawah (Oryza sativa L.) varietas IR 42 dengan metode SRI (System of Rice Intensification). Jurnal Sagu, 9(1), 21-27. Direct Link.
Ikhwani, Pratiwi, Paturrahman, dan Makarim. (2013). Peningkatan produktivitas padi melalui penerapan jarak tanam jajar legowo. Jurnal Iptek Tanaman Pangan, 8(2), 72–79. Direct Link.
IPCC. (2013). Climate change 2013 the physical science basis, working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. London, UK: Cambridge University Press Direct Link.
Kartikawati, R., H.L. Susilawati, A. Miranti, and P. Setyanto. (2011). Teknologi mitigasi gas rumah kaca (GRK) dari lahan sawah. Agroinovasi, XLII(3423), 7–12. Direct Link.
Kartikawati R. and T. Sopiawati. (2017). Pengukuran gas rumah kaca dengan teknik sungkup tertutup otomatis (automatically closed chamber). Badan Litbang Pertanian, Pati, Jawa Tengah.
Khalil, M. A. K., R. A. Rasmussen, M. X. Wang, and L. Ren. (1991). Methane emissions from rice fields in China. Environmental Science and Technology, 25(5), 979–81. CrossRef
Linquist, B.A., M.A. Adviento-Borbe, C.M. Pittelkow, C. van Kessel, and K.J. van Groenigen. (2012). Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Research, 135, 10–21. CrossRef

Lipper, L. (2014). Climate-smart agriculture for food security. Nature Climate Change 4, 1068–72. CrossRef
Nisha, F.N dan C. Arief. (2019). Pengembangan model denitrification decomposition (DNDC) untuk pendugaan emisi gas metana (CH4) dari lahan padi sawah. Jurnal Teknik Sipil dan Lingkungan, 4(1), 1–12. CrossRef
Riyani, R., Radian, dan S. Budi. (2013). Pengaruh berbagai pupuk organik terhadap pertumbuhan dan hasil padi di Lahan pasang surut. Jurnal Sains Pertanian Equator, 2(2), 1–11. Direct Link.
Rejekiningrum, P., I. Las, I. Amien, N. Pujilestari, W. Estiningtyas, E. Surmaini, Suciantini, Y. Sarvina, A. Pramudia, B. Kartiwa, S. Muharsini, Sudarmaji, Hardiyanto, C. Hermanto, G.A. Putranto, O. Marbun. (2011). Adaptasi perubahan iklim sektor pertanian 2018. Badan Litbang Pertanian, Pati, Jawa Tengah.
Session, F., and A. Maskrey. (2007). Disaster risk reduction 2007 global review. June, 5–7. Direct Link.
Setyanto, P, A. Pramono, T.A. Adriany, H,L, Susilawati, T. Tokida, A.T.Padre & K. Minamikawa. (2017).
Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indo-nesia without yield loss. Soil Science and Plant Nu-trition 64(1), 23-30, CrossRef
Tubiello, FN., M. Salvatore, S. Rossi, A. Ferrara, N. Fitton, and P. Smith. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8, 1–11. CrossRef
Utama, M.Z.H., W. Haryoko, R. Munir, Sunadi. (2009). Penapisan varietas padi toleran salinitas pada la-han rawa di Kabupaten Pesisir Selatan. Jurnal Agronomi Indonesia, 37(2), 101–106.
Wahyuni, S. (2008). Hasil padi gogo dari dua sumber benih yang berbeda. Penelitian Pertanian Tana-man Pangan, 27(3), 135–140. Direct Link.
Xu, Y., J. Ge, S. Tian, S. Li, A.L. Nguy-Robertson, M. Zhan, and C. Cao. (2015). Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Science of the Total Environment 505, 1043–52. CrossRef