Molecular basis of heat stress tolerance in wheat

Authors

  • Preeti Kayastha Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa Campus, Ru-pandehi, Nepal
  • Barsha KC Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa Campus, Ru-pandehi, Nepal
  • Biddhya Pandey Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa Campus, Ru-pandehi, Nepal
  • Bimal Roka Magar Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa Campus, Ru-pandehi, Nepal
  • Himani Chand Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa Campus, Ru-pandehi, Nepal
  • Janak Bhandari Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa Campus, Ru-pandehi, Nepal
  • Pawan Lamichhane Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa Campus, Ru-pandehi, Nepal
  • Prakash Baduwal Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa Campus, Ru-pandehi, Nepal
  • Mukti Ram Poudel Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa Campus, Ru-pandehi, Nepal

DOI:

https://doi.org/10.11594/jaab.04.01.02

Keywords:

Genome, Heat Shock Proteins, Molecular breeding, Omics, Yield

Abstract

The rise in Earth’s temperature is one of the most alarming climatic issues in the field of agriculture and food production, in the present context. The increase in temperature leads to heat stress, major abiotic stress responsible for a huge decline in the production of crops. Wheat (Triticum aestivum), among many crops, also experiences a significant decline in yield and overall productivity due to extreme heat stress. But Wheat has also developed natural tolerance mechanisms to defend itself from heat damage. The selection of cultivars with a higher degree of tolerance mechanism protects against thermal stress, which minimizes the risk of poor productivity to a greater extent. In this review, we discuss the current works of literature concerning the heat stress tolerance mechanism in wheat plants and also highlight the strategic approaches that improve their heat stress tolerance at the molecular level. The success of these approaches depends on a better understanding of heat tolerance traits, their genomic composition, and molecular responses.

Downloads

Download data is not yet available.

References

Abdelrahman, M., Burritt, D. J., Gupta, A., Tsujimoto, H., & Tran, L. S. P. (2020). Heat stress effects on source-sink relationships and metabolome dynamics in wheat. Journal of Experimental Botany, 71(2), 543–554. CrossRef

Akter, N., & Islam, M. R. (2017). Heat stress effects and management in wheat . A review. Agronomy for Sustainable Development, 37(5). CrossRef

Almeselmani, M., Deshmukh, P. S., & Sairam, R. K. (2009). High temperature stress tolerance in wheat genotypes : Role of antioxidant defence enzymes. Acta Agronomica Hungarica, 57(1), 1–14. CrossRef

Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31(1), 11–38. CrossRef

Bhusal, N., Sarial, A. K., Sharma, P., & Sareen, S. (2017). Mapping QTLs for grain yield components in wheat under heat stress. PLoS ONE, 12(12), 1–14. CrossRef

Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4(JUL), 1–18. CrossRef

Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B., & Mittler, R. (2021). Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum, 171(1), 66–76. CrossRef

Comastri, A., Janni, M., Simmonds, J., Uauy, C., Pignone, D., Nguyen, H. T., & Marmiroli, N. (2018). Heat in wheat: Exploit reverse genetic techniques to discover new alleles within the triticum durum shsp26 family. Frontiers in Plant Science, 9(September), 1–16. CrossRef

Cossani, C. M., & Reynolds, M. P. (2012). Physiological Traits for Improving Heat Tolerance in Wheat. Plant Physiology, 160(December), 1710–1718. CrossRef

Devireddy, A. R., Tschaplinski, T. J., Tuskan, G. A., Muchero, W., & Chen, J. G. (2021). Role of reactive oxygen species and hormones in plant responses to temperature changes. International Journal of Molecular Sciences, 22(16). CrossRef

Dubey, R., Pathak, H., Chakrabarti, B., Singh, S., Gupta, D. K., & Harit, R. C. (2020). Impact of terminal heat stress on wheat yield in India and options for adaptation. Agricultural Systems, 181(November 2019), 102826. CrossRef

El Sabagh, A., Hossain, A., Barutçular, C., Islam, M. S., Awan, S. I., Galal, A., Iqbal, M. A., Sytar, O., Yildirim, M., Meena, R. S., Fahad, S., Najeeb, U., Konuskan, O., Habib, R. A., Llanes, A., Hussain, S., Farooq, M., Hasanuzzaman, M., Abdelaal, K. H., … Saneoka, H. (2019). Wheat (Triticum aestivum l.) production under drought and heat stress – adverse effects, mechanisms and mitigation: A review. Applied Ecology and Environmental Research, 17(4), 8307–8332. CrossRef

Erenstein, O., Jaleta, M., Mottaleb, K.A., Sonder, K., Donovan, J., Braun, HJ. (2022). Global Trends in Wheat Production, Consumption and Trade. In: Reynolds, M.P., Braun, HJ. (eds) Wheat Improvement. Springer, Cham. CrossRef

Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., & Huang, J. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8(June), 1–16. CrossRef

Food and Agricultural Organization. (2022). FAO Cereal Supply and Demand Brief. 1-4

Farooq, M., Nadeem, F., Gogoi, N., Ullah, A., Alghamdi, S. S., Nayyar, H., & Siddique, K. H. M. (2017). Heat stress in grain legumes during reproductive and grain-filling phases. Crop and Pasture Science, 68(10–11), 985–1005. CrossRef

Fu, J., Momčilović, I., Clemente, T. E., Nersesian, N., Trick, H. N., & Ristic, Z. (2008). Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress. Plant Molecular Biology, 68(3), 277–288. CrossRef

Grote, U., Fasse, A., Nguyen, T. T., & Erenstein, O. (2021). Frontiers in Sustainable Food Systems, 4(February), 1–17. CrossRef

Hassouni, K. El, Belkadi, B., Filali-Maltouf, A., Tidiane-Sall, A., Al-Abdallat, A., Nachit, M., & Bassi, F. M. (2019). Loci controlling adaptation to heat stress occurring at the reproductive stage in durum wheat. Agronomy, 9(8), 1–20. CrossRef

Hemantaranjan, A., Malik, C. P., & Bhanu, A. N. (2018). Physiology of heat stress and tolerance mechanisms - An Overview. The Journal of Plant Science Research, 34(1), 51–64. CrossRef

Intergovernmental Panel on Climate Change. (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. Ipcc - Sr15, 2(October), 17–20. Direct Link.

Janni, M., Gullì, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T., Marmiroli, N., & Foyer, C. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 71(13), 3780–3802. CrossRef

Kaur, R., Sinha, K., & Bhunia, R. K. (2019). Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L. Molecular Biology Reports, 46(2), 2577–2593. CrossRef

Kumar, R. R., Singh, K., Ahuja, S., Tasleem, M., Singh, I., Kumar, S., Grover, M., Mishra, D., Rai, G. K., Goswami, S., Singh, G. P., Chinnusamy, V., Rai, A., & Praveen, S. (2019). Quantitative proteomic analysis reveals novel stress-associated active proteins (SAAPs) and pathways involved in modulating tolerance of wheat under terminal heat. Functional and Integrative Genomics, 19(2), 329–348. CrossRef

Li, G., Chen, T., Feng, B., Peng, S., Tao, L., & Fu, G. (2021) Respiration, rather than photosynthesis, determines rice yield loss under moderate high-temperature conditions. Frontiers in Plant Science, 12(June). CrossRef

Li, M., Feng, J., Zhou, H., Najeeb, U., Li, J., Song, Y., & Zhu, Y. (2022). Overcoming reproductive compromise under heat stress in wheat: Physiological and genetic regulation, and breeding strategy. Frontiers in Plant Science, 13(May). CrossRef

Lu, L., Liu, H., Wu, Y., & Yan, G. (2022). Wheat genotypes tolerant to heat at seedling stage tend to be also tolerant at adult stage: The possibility of early selection for heat tolerance breeding. Crop Journal, 10(4), 1006–1013. CrossRef

Moore, C. E., Meacham-Hensold, K., Lemonnier, P., Slattery, R. A., Benjamin, C., Bernacchi, C. J., Lawson, T., & Cavanagh, A. P. (2021). The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. Journal of Experimental Botany, 72(8), 2822–2844. CrossRef

Munaweera, T. I. K., Jayawardana, N. U., Rajaratnam, R., & Dissanayake, N. (2022). Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agriculture and Food Security, 11(1), 1–28. CrossRef

Nadeem, M., Li, J., Wang, M., Shah, L., Lu, S., Wang, X., & Ma, C. (2018). Unraveling field crops sensitivity to heat stress:Mechanisms, approaches, and future prospects. Agronomy, 8(7), 128. CrossRef

Ni, Z., Li, H., Zhao, Y., Peng, H., Hu, Z., Xin, M., & Sun, Q. (2018). Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. Crop Journal, 6(1), 32–41. CrossRef

Poudel, P. B., & Poudel, M. R. (2020). Heat stress effects and tolerance in wheat: A Review. Journal of Biology and Today’s World, 9(3), 1–6. Direct Link.

Qadir, T., Akhtar, K., Ahmad, A., Shakoor, A., Saqib, M., Hussain, S., & Rafiq, M. (2018). Effect of cold and heat stress on different stages of wheat: A review. Journal of Global Innovations in Agricultural and Social Sciences, 6(4), 123–128. CrossRef

Qi, X., Xu, W., Zhang, J., Guo, R., Zhao, M., Hu, L., Wang, H., Dong, H., & Li, Y. (2017). Physiological characteristics and metabolomics of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. Protoplasma, 254(2), 1017–1030. CrossRef

Qin, D., Wu, H., Peng, H., Yao, Y., Ni, Z., Li, Z., Zhou, C., & Sun, Q. (2008). Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics, 9, 1–19. CrossRef

Qu, A. L., Ding, Y. F., Jiang, Q., & Zhu, C. (2013). Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications, 432(2), 203–207. CrossRef

Riaz, M. W., Yang, L., Yousaf, M. I., Sami, A., Mei, X. D., Shah, L., Rehman, S., Xue, L., Si, H., & Ma, C. (2021). Effects of heat stress on growth, physiology of plants, yield and grain quality of different spring wheat (Triticum aestivum l.) genotypes. Sustainability (Switzerland), 13(5), 1–18. CrossRef

Sarkar, S., Islam, A. K. M. A., Barma, N. C. D., & Ahmed, J. U. (2021). Tolerance mechanisms for breeding wheat against heat stress: A review. South African Journal of Botany, 138, 262–277. CrossRef

Savadi, S., Prasad, P., Kashyap, P. L., & Bhardwaj, S. C. (2018). Molecular breeding technologies and strategies for rust resistance in wheat ( Triticum aestivum ) for sustained food security. British Society for Plant Pathology, 67, 771–791. CrossRef

Sehgal, A., Sita, K., Siddique, K. H. M., Kumar, R., Bhogireddy, S., Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V. V., & Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science, 871. CrossRef

Shah, T., Xu, J., Zou, X., Cheng, Y., Nasir, M., & Zhang, X. (2018). Omics approaches for engineering wheat production under abiotic stresses. International Journal of Molecular Sciences, 19(8), 1–16. CrossRef

Sun, L., Wen, J., Peng, H., Yao, Y., Hu, Z., Ni, Z., Sun, Q., & Xin, M. (2022). The genetic and molecular basis for improving heat stress tolerance in wheat. Abiotech, 3(1), 25–39. CrossRef

Talukder, S. K., Babar, A., Vijayalakshmi, K., Poland, J., Venkata, P., Prasad, V., Bowden, R., & Fritz, A. (2014). Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genetics, 15(97), 1–13.

Tian, B., Talukder, S. K., Fu, J., Fritz, A. K., & Trick, H. N. (2018). Expression of a rice soluble starch synthase gene in transgenic wheat improves the grain yield under heat stress conditions. In Vitro Cellular and Developmental Biology - Plant, 54(3), 216–227. CrossRef

Touzy, G., Lafarge, S., Redondo, E., Lievin, V., Decoopman, X., Le Gouis, J., & Praud, S. (2022). Identification of QTLs affecting post-anthesis heat stress responses in European bread wheat. Theoretical and Applied Genetics, 135(3), 947–964. CrossRef

Tricker, P. J., Elhabti, A., Schmidt, J., & Fleury, D. (2018). The physiological and genetic basis of combined drought and heat tolerance in wheat. Journal of Experimental Botany, 69(13), 3195–3210. CrossRef

Uddin, R., Subhani, G. M., Ahmad, N., Hussain, M., & Rehman, A. U. (2010). Effect of temperature on development andain formation in spring wheat. Pakistan Journal of Botany, 42(2), 899–906.

Wang, X., Hou, L., Lu, Y., Wu, B., Gong, X., Liu, M., Wang, J., Sun, Q., Vierling, E., & Xu, S. (2018). Metabolic adaptation of wheat grain contributes to stable filling rate under heat stress. Journal of Experimental Botany, 69(22), 5531–5545. Cross-Ref

Wu, B., Qiao, J., Wang, X., Liu, M., Xu, S., & Sun, D. (2021). Factors affecting the rapid changes of protein under short-term heat stress. BMC Genomics, 22(1), 1–11. CrossRef

Yadav, M. R., Choudhary, M., Singh, J., Lal, M. K., Jha, P. K., Udawat, P., Gupta, N. K., Rajput, V. D., Garg, N. K., Maheshwari, C., Hasan, M., Gupta, S., Jatwa, T. K., Kumar, R., Yadav, A. K., & Vara Prasad, P. V. (2022). Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. International Journal of Molecular Sciences, 23(5). CrossRef

Zhang, Y., Pan, J., Huang, X., Guo, D., Lou, H., Hou, Z., Su, M., Liang, R., Xie, C., You, M., & Li, B. (2017). Differential effects of a post-anthesis heat stress on wheat (Triticum aestivum L.) grain proteome determined by iTRAQ. Scientific Reports, 7(1), 1–11. CrossRef

Downloads

Published

2023-01-10

How to Cite

Molecular basis of heat stress tolerance in wheat. (2023). Journal of Agriculture and Applied Biology, 4(1), 11-19. https://doi.org/10.11594/jaab.04.01.02