Comparison between two gypsum content determination methods applied to the study of soils in arid regions

Authors

  • Fouzia Youcef University of KASDI Merbah-Ouargla, Laboratory of Biogeochemistry of Desertic Areas, Ouargla 30 000 Algeria
  • Djihane Kairouani University of KASDI Merbah-Ouargla, Faculty of Science of Nature and Life, Ouargla 30 000 Al-geria
  • Fatiha Boukarkar University of KASDI Merbah-Ouargla, Faculty of Science of Nature and Life, Ouargla 30 000 Al-geria
  • Baelhadj Hamdi Aïssa University of KASDI Merbah-Ouargla, Faculty of Science of Nature and Life, Ouargla 30 000 Al-geria

DOI:

https://doi.org/10.11594/jaab.04.02.08

Keywords:

Arid region, Artieda method, Precipitated BaSO4 method, Thermogravimetry, Weight loss

Abstract

With the scarcity, degradation of soils, the growing populations and the need to guarantee their food security, the valorization of gypsum soils widespread in arid and semi-arid regions is becoming a necessity. North African countries have a large part of their land area located in arid regions. It is therefore important to characterize the gypsum content using simple, rapid, economical and, environmentally friendly methods. Several methods have been proposed in the literature (chemical, thermogravimetric, and x-ray techniques). In this work, a comparison between two methods for gypsum determination in soils was undertaken. The first method of Coutinet is chemical and based on the use of BaSO4 for the precipitation of sulfate ions. The second method is Artieda method which is based on measuring the weight difference caused by the loss of crystalline water from gypsum molecules between the temperatures of 70 and 90 °C. To achieve the objective of this work, forty-three soil samples were analyzed. They were taken from two arid regions (Ouargla and Touggourt) located in the northern Sahara (Algeria). The soils contain gypsum accumulations. The results showed that most of the samples are slightly gypsiferous, with 36 and 32 samples for the Coutinet and Artieda methods respectively. A strong positive correlation (R2 = 0.95) exists between the results of the two methods studied. For gypsum contents higher than 2 %, the correlation coefficient is 0.94. However, for samples with contents less than 2 %, the correlation is very weak with R2=0.19. The Artieda method is thus encouraged for the gypsum quantification in soils of arid regions. This method is easy, requiring simple laboratory equipment (mainly a ventilated oven and a precision balance). Chemical methods have the disadvantage of being time-consuming and using expensive chemicals that are dangerous for the environment and human health.

Downloads

Download data is not yet available.

References

Abdesselam, S., & Timechbache, M. L. (2016). Sur la nature et l’origine de la croûte gypseuse dite «deb deb» dans les palmerais de l’ouest des ziban. Algerian Journal of Arid Environment, 6(1), 87-95. Direct Link.

Al-Kayssi, A. W. (2022). Quantifying soil physical quality by using indicators and pore volume-function characteristics of the gypsiferous soils in Iraq. Geoderma Regional, 30, e00556. CrossRef

Álvarez, D., Antúnez, M., Porras, S., Rodríguez-Ochoa, R., Olarieta, J. R. & Poch, R. M. (2022). Quantification of gypsum in soils: Methodological proposal. Spanish Journal of Soil Science, 12, 10669. CrossRef

Artieda, O., Herrero, J., & Drohan P. J. (2006). Refinement of the differential water loss method for gypsum determination in soils. Soil Science Society of America Journal, 70, 1932–1935.

CrossRef

Boumaraf, B. (2013). Caractéristiques et fonctionnement des sols dans la vallée de oued Righ, Sahara Nord Oriental Algérie [Unpublished doctoral thesis, University of Reims], France.

Casby-Horton, S., Herrero, J. & Rolong, N.A. (2015). Gypsum soils-their morphology, classifica-tion, function, and landscapes. in sparks, D.L. (Ed.), Advances in Agronomy (Vol. 130, pp. 231-290). Elsevier. CrossRef

Coutinet, S. (1965). Méthodes d'analyses utilisables pour les sols salés, calcaires et gypseux. Agronomie Tropicale, 20 (12), 1242-1253. Direct Link.

Dutil, P. (1971). Contribution à l'étude des sols et des paléosols du Sahara (Unpublished doctoral thesis, University of Strasbourg], France.

Escudero, A., Palacio, S., Maestre, F. T., & Luzuriaga, A. L. (2015). Plant life on gypsum: a review of its multiple facets. Biological Reviews, 90(1), 1-18. CrossRef

Hamdi-Aissa, B. (2001). Le fonctionnement actuel et passé des sols du Nord Sahara (cuvette de Ouargla). Approche micromorphologique, géochimique et minéralogique et organisation spatiale. [Unpublished doctoral thesis, Institut National Agronomique,] Paris Grignon, France.

Hassan, N. A. (2021). Dissolution and deformation characteristics of gypsum soil along the Baiji railway. Materials today: Proceedings, 3rd International Conference on Materials Engineer-ing & Science 42, (2426-2430). CrossRef

Herrero, J., Artieda, O., & Weindorf, D. C. (2016). Soil gypsum determination. In Logsdon, S. (Ed.), SSSA Book Series 5. Methods of soil analysis (Vol. 1, pp. 1-6). Soil Science Society of America. CrossRef

Herrero, J., Artieda, O., & Weindorf, D. C. (2020). Soil gypsum determination. Soil Science Society of America Journal, 84(5), 1477-1484. CrossRef

Herrero, J., & Zartman, R. E. (2021). Established soil science methods can benefit the construc-tion industry when determining gypsum content. Cleaner Engineering and Technology, 4, 100154. CrossRef

Lagerwerff, J. V., Akin, G. W., & Moses, S. W. (1965). Detection and determination of gypsum in soils. Soil Science Society of America Journal, 29(5), 535-540. CrossRef

Lebron, I., Herrero, J., & Robinson, D. A. (2009). Determination of gypsum content in dryland soils exploiting the gypsum–bassanite phase change. Soil Science Society of America Journal, 73, 03-411. CrossRef

Moret-Fernández, D., & Herrero, J. (2015), Effect of gypsum content on soil water retention. Journal of Hydrology, 528, 122-126. CrossRef

Omran, E. S. E. (2016). A simple model for rapid gypsum determination in arid soils. Modeling Earth Systems and Environment, 2, 1-12. CrossRef

Poch, R. M., Rodríguez-Ochoa, R., Artieda, O., Balasch, J. C., & Boixadera, J. (2021). Silt-sized sed-iments and gypsum on surface formations in the Ebro Basin: A disambiguation of the term “gypsiferous silts. Geologica acta, 19(8), 1-21. CrossRef

Samia, H., Hamdi-Aïssa, B., & Tewfik, M. (2023). Mineralogical and micromorphological proper-ties of oued Righ region soils in the northern Sahara of Algeria. Eurasian Soil Science, 56, 1479–1497. CrossRef

Weindorf, A., Herrero, J., Castañeda, C., Bakr, N., & Swanhart, S. (2013). Direct soil gypsum quan-tification via portable x-ray fluorescence spectrometry. Soil Science Society of AmericaJour-nal, 77, 2071–2077. CrossRef

Youcef, F., & Hamdi-Aissa, B. (2014). Paleoenvironmental reconstruction from palaeolake sedi-ments in the area of Ouargla (Northern Sahara of Algeria). Arid Land Research and Man-agement, 28 (2), 129–146. CrossRef

Youcef, F., Hamdi-Aïssa, B., Bouhadja, M., & Lamini, K. (2014). Sur l’origine des croûtes gypseuses du Sahara septentrional Algérien: Cas de la région de Ouargla. Algerian Journal of Arid Environment, (4)2, 42-49. Direct Link.

Youcef, F. (2016). Contribution à la reconstitution du paléoenvironnement au Sahara septentrio-nal dans les sols de bassins endoréiques: Cas de la région d'Ouargla. [Unpublished doctoral thesis, University of Ouargla], Algeria.

Downloads

Published

2023-12-06

How to Cite

Comparison between two gypsum content determination methods applied to the study of soils in arid regions. (2023). Journal of Agriculture and Applied Biology, 4(2), 182-190. https://doi.org/10.11594/jaab.04.02.08