Main Article Content

Abstract

Soil water erosion is one of the problems that affect the environment, agriculture and social life by threatening several land surfaces. The objective of this study is to use the USLE model, GIS and remote sensing (RS) to estimate the annual rate of soil loss by water erosion in the Theniet El Had National Park (THNP) which belongs to the mountainous ecosystem of Djebel El Meddad, located in the northwest of Algeria. The use of the USLE model takes into account the five factors controlling water erosion, namely: the rain erosivity (R) determined from the annual rainfall data, the soil erodibility (K) developed from soil survey data, the slope lengths (LS) generated by using DEM, the vegetation cover (C) by the use of RS data and erosion control management practices (P) by field trips. The integration of these factors made it possible to establish the quantitative map of the annual rate of soil loss varying between 0.02 and 55.10 (t/ha.year), with an average of around 6.64 (t/ha.year). Five erosion aggressiveness classes are used; very weak, weak, moderate, strong and very strong which represent a rate respectively of 23.70, 44.65, 22.72, 4.41 and 4.52 % of the study area surface. The areas with high and very high erosion rates are located in the north having a very rugged relief and low vegetation cover. This study can be used in the mountainous ecosystems and it will make it possible to set up priority intervention zones to combat the risk of water erosion.

Article Details

How to Cite
Fellah, S., Benzater, B., Guemou, L., Hachemaoui, A., Benzohra, M. N., Elouissi, A., & Hamimed, A. (2024). Using USLE, GIS and remote sensing for the soil loss assessment in the National Park of Theniet El Had, Algeria. Journal of Agriculture and Applied Biology, 5(2), 178-193. https://doi.org/10.11594/jaab.05.02.04

References

Belasri, A., & Lakhouili, A. (2016). Estimation of soil erosion risk using the universal soil loss equation (USLE) and geo-information technology in Oued El Makhazine Watershed, Moroc-co. Journal of Geographic Information System, 8(01), 98. CrossRef
Belay, T., Melese, T., & Senamaw, A. (2022). Impacts of land use and land cover change on eco-system service values in the Afroalpine area of Guna Mountain, Northwest Ethiopia. Heliyon, 8(12). CrossRef
Benchetrit, M. (1972). L'érosion actuelle et ses conséquences sur l'aménagement en Algérie. [Currenterosion and itsconsequences on development in Algeria]. Revue Géographique des Pays Méditerranéens, tome 15(4-1973), 115-116. Direct Link.
Bensekhria, A., & Bouhata, R. (2022). Assessment and mapping soil water erosion using RUSLE approach and GIS tools: case of ouedel-Hai watershed, Aurès West, Northeastern of Algeria. ISPRS International Journal of Geo-Information, 11(2), 84. CrossRef
Benzater, B., Elouissi, A., Benaricha, B., & Habi, M. (2019). Spatio-temporal trends in daily maxi-mum rainfall in northwestern Algeria (Macta watershed case, Algeria). Arabian Journal of Geosciences, 12, 1-18. CrossRef
Bouguerra, H., Bouanani, A., Khanchoul, K., Derdous, O., & Tachi, S. E. (2017). Mapping erosion prone areas in the Bouhamdane watershed (Algeria) using the Revised Universal Soil Loss Equation through GIS. Journal of Water and Land Development, 32(1), 13. Direct Link.
Bouhadeb, C. E., Menani, M. R., Bouguerra, H., & Derdous, O. (2018). Assessing soil lossusing GIS based RUSLE methodology. Case of the Bou Namoussa watershed–North-East of Alge-ria. Journalof Water and Land Development, 36(1), 27-35. CrossRef
Bou-Imajjane, L., & Belfoul, M.A. (2020). Soil loss assessment in Western High Atlas of Morocco: Beni Mohand watershed study case. Hindawi, Applied and Environmental Soil Science, 2020(1), 1-15. CrossRef
Brown, R. B. (2003) Soil texture. University of Florida, IFAS Extension. Direct Link.
Djoukbala, O., Hasbaia, M., Benselama, O., & Mazour, M. (2019). Comparison of the erosion pre-diction models from USLE, MUSLE and RUSLE in a Mediterranean watershed, case of Wadi Gazouana (NW of Algeria). Modelling Earth Systems and Environment, 5(2), 725-743. CrossRef
El Jazouli, A., Barakat, A., Ghafiri, A., El Moutaki, S., Ettaqy, A., & Khellouk, R. (2017). Soil erosion modeled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in Middle Atlas (Morocco). Geoscience Letters, 4(1), 25 ‏ CrossRef
Ferreira, C. S., Seifollahi-Aghmiuni, S., Destouni, G., Ghajarnia, N., & Kalantari, Z. (2022). Soil deg-radation in the European Mediterranean region: Processes, status and consequenc-es. Science of the Total Environment, 805, 150106. CrossRef
Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953-961. CrossRef‏
Girmay, G., Moges, A., & Muluneh, A. (2020). Estimation of soil loss rate using the USLE model forAgewmariayam Watershed, northern Ethiopia. Agriculture & Food Security, 9, 1-12. CrossRef
Hachemaoui, A., Elouissi, A., Benzater, B., & Fellah, S. (2022). Assessment of the hydrological im-pact of land use/cover changes in a semi-arid basin using the SWAT model (case of the Oued Saïda basin in western Algeria). Modeling Earth Systems and Environment, 8(4), 5611-5624. CrossRef
Hassan, H. E. H., Charbel, L., & Touchart, L. (2018). Modélisation de l'érosion hydrique à l’échelle du bassin versant du Mhaydssé. Békaa-Liban [Modeling of water erosion at the scale of the Mhaydssé watershed. Bekaa-Lebanon]. VertigO-la Revue Electronique en Sciences de l'Envi-ronnement, 18(1). CrossRef
Hategekimana, Y., Allam, M., Meng, Q., Nie, Y., & Mohamed, E. (2020). Quantification of soil loss-es alongthecoastal protected areas in Kenya. Land, 9(5),137. CrossRef
Jemai, S., Kallel, A., Agoubi, B., & Abida, H. (2021). Soil erosion estimation in arid area by USLE model applying GIS and RS: Case of Oued El Hamma catchment, south-eastern Tuni-sia. Journal of The Indian Society of Remote Sensing, 49(6), 1293-1305. ‏CrossRef
Khaoula, K., & Sihem, J. (2021). Évaluation de l’érosion hydrique dans des bassins versants de la zone semi-aride tunisienne avec les modèles RUSLE et MUSLE couplés à un Système d’Information Géographique [Assessment of water erosion in watersheds in the Tunisian-semi-arid zone with the RUSLE and MUSLE modelscoupledwith a Geographic Information System]. Cahiers Agricultures, 30,7. CrossRef
Kolli, M. K., Opp, C., & Groll, M. (2021). Estimation of soil erosion and sediment yield concentra-tion across the Kolleru Lake catchment using GIS. Environmental Earth Sciences, 80(4), 161. CrossRef
Koussa, M., & Bouziane, M. (2018). Apport du SIG a la cartographie des zones à risqued’érosionhydrique dans la région de Djelfa, Algérie [Contribution of GIS to the mapping of areas at risk of water erosion in the region of Djelfa, Algeria]. Lebanese Science Jour-nal, 19(1), 31-46. CrossRef
Koussa, M., & Bouziane, M.T. (2019). Estimation des paramètres de l'érosion hydrique par Approche SIG/USLE: cas du bassin versant de l'Oued Arab (région de Khenchela, Nord-Est de l’Algérie) [Estimation of water erosion parameters by GIS/USLE approach: Case of the Oued Arab watershed (Khenchela region, North-East Algeria)]. Agriculture and Forestry Journal, 3(1), 36-45. CrossRef
Lamine, T. M., M’hamed, M., Azouzi Blel, P., Mohamed, Z., & Benchabane, H. (2016) Etude Eco-Dendrométrique Du Dépérissement Du Cèdre De l’Atlas Dans Le Parc National De Theniet El Had “Algérie” [Eco-Dendrometric Study of Atlas Cedar Dieback in Theniet El Had National Park “Algeria”]. European Scientifique Journal, 12(29), 112-123. CrossRef
Li, H., & Shi, D. (2024). Spatio-temporal variation in soil erosion on sloping farmland based on the integrated valuation of ecosystem services and trade-offs model: A case study of Chongqing, southwest China. Catena, 236, 107693. CrossRef
Li, W., Cao, Q., Lang, K., & Wu, J. (2017). Linking potential heat source and sink to urban heat is-land: Heterogeneous effects of landscape pattern on land surface temperature. Science of the Total Environment, 586, 457-465. CrossRef
Mahleb, A., Hadji, R., Zahri, F., Boudjellal, R., Chibani, A., & Hamed, Y. (2022). Water-borne ero-sion estimation using the Revised Universal Soil Loss Equation (RUSLE) model over a semiar-id watershed: Case study of Meskiana Catchment, Algerian-Tunisian Border. Geotechnical and Geological Engineering, 40(8), 4217-4230. CrossRef
Mairif, M., Bendifallah, L., & Doumandji, S. (2023). Diversity of Odonates (Odonata, Anisoptera & Zygoptera) in the Theniet El‎ Had National Park-North West of Algeria. Journal of Insect Bio-diversity and Systematics, 9(1), 155-182. CrossRef
Mandal, A., Das, A., Das, M., & Pereira, P. (2023). A quantitative review of ecosystem services research in Himalayan mountainous region. Environmental Challenges, 100792. CrossRef
Markose, V. J., & Jayappa, K. S. (2016). Soil loss estimation and prioritization of sub-watersheds of Kali River basin, Karnataka, India, using RUSLE and GIS. Environmental Monitoring and Assessment, 188, 1-16. CrossRef
Meddi, M., Toumi, S., & Assani, A. A. (2016). Spatial and temporal variability of the rainfall ero-sivity factor in Northern Algeria. Arabian Journal of Geosciences, 9, 1-13. CrossRef
Medjani, F., Derradji, T., Zahi, F., Djidel, M., Labar, S., & Bouchagoura, L. (2023). Assessment of soil erosion by Universal Soil Loss Equation model based on Geographic Information Sys-tem data: A case study of the Mafragh watershed, north-eastern Algeria. Scientific Afri-can, 21, e01782. CrossRef
Melalih, A., & Mazour, M. (2021). Using RUSLE and GIS for the soil loss assessment in arid re-gions: The case of the Ain Sefra catchment in the Ksour Mountains, Algeria. Journal of Wa-ter and Land Development, 48, 205-214. Direct Link.
Milazzo, F., Fernández, P., Peña, A., & Vanwalleghem, T. (2022). The resilience of soil erosion rates under historical land use change in agroecosystems of Southern Spain. Science of The Total Environment, 822, 153672. CrossRef
Mitasova, H., Hofierka, J., Zlocha, M., & Iverson, L. R. (1996). Modelling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Sys-tems, 10(5), 629-641. CrossRef
Moore, I. D., & Wilson, J. P. (1992). Length-slope factors for the Revised Universal Soil Loss Equa-tion: Simplified method of estimation. Journal of Soil and Water Conservation, 47(5), 423-428. Direct Link.
Nagdeve, M., Paul, P. K., Zhang, Y., & Singh, R. (2021). Continuous Contour Trench (CCT): Under-standings of hydrological processes after standardisation of dimensions and development of a user-friendly software. Soil and Tillage Research, 205, 104792. CrossRef
Ogawa, R., Hirata, M., Gebremedhin, B. G., Uchida, S., Sakai, T., Koda, K., & Takenaka, K. (2021). Spatial modeling of soil erosion and identification of high-risk spots with the GIS-RUSLE model for the Adi Zaboy watershed, eastern Tigray region, Ethiopia. Journal of Arid Land Studies, 31(1), 1-14. CrossRef
Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H. A., Naderi, M., & Dematte, J. A. M. (2017). Soil loss estimation using RUSLE model, GIS and remote sensing techniques: A case study from the Dembecha Watershed, Northwestern Ethiopia. Geoderma Regional, 11, 28-36. CrossRef
Ostovari, Y., Moosavi, A. A., & Pourghasemi, H. R. (2020). Soil loss tolerance in calcareous soils of a semiarid region: evaluation, prediction, and influential parameters. Land Degradation & Development, 31(15), 2156-2167. CrossRef
Panagos, P., Matthews, F., Patault, E., De Michele, C., Quaranta, E., Bezak, N., ... & Borrelli, P. (2024). Understanding the cost of soil erosion: An assessment of the sediment removal costs from the reservoirs of the European Union. Journal of Cleaner Production, 434, 140183. CrossRef
Panagos, P., Standardi, G., Borrelli, P., Lugato, E., Montanarella, L., & Bosello, F. (2018). Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degradation & Develop-ment, 29(3), 471-484. CrossRef
Peng, Q., Wang, R., Jiang, Y., Zhang, W., Liu, C., & Zhou, L. (2022). Soil erosion in Qilian mountain national park: dynamics and driving mechanisms. Journal of Hydrology: Regional Stud-ies, 42, 101144. CrossRef
Rango, A., & Arnoldus, H. M. J. (1987). Aménagement des bassins versants [Watershed develop-ment]. Cahiers Techniques de la FAO, 36, 1-11. Direct Link.
Rellini, I., Scopesi, C., Olivari, S., Firpo, M., & Maerker, M. (2019). Assessment of soil erosion risk in a typical Mediterranean environment using a high-resolution RUSLE approach (Portofino promontory, NW-Italy). Journal of Maps, 15 (2), 356-362. CrossRef
Renard, K. G., Foster G. R., Weesies G. A., McCool D. K., & Yoder D. C. (1997). Predicting soil ero-sion by water: a guide to conservation planning with the Revised Universal Soil Loss Equa-tion (RUSLE). US Department of Agriculture, Agricultural Research Service. Direct Link.
Sahnoun, F., Abderrahmane, H., Kaddour, M., Abdelkader, K., Mohamed, B., & Castro, T. A. H. D. (2021). Application of SEBAL and T s/VI trapezoid models for estimating actual evapotran-spiration in the Algerian semi-arid environment to improve agricultural water manage-ment. Revista Brasileira de Meteorologia, 36, 219-236. CrossRef
Sandholt, I., Rasmussen, K., & Andersen, J. (2002). A simple interpretation of the surface temper-ature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79(2-3), 213-224. CrossRef
Saoud, M., & Meddi, M. (2022). Mapping of erosion using USLE, GIS and remote sensing in Wadi El Hachem Watershed (Northern Algeria): Case study. Journal of the Indian Society of Re-mote Sensing, 50(3), 569-581. CrossRef
Sarmoum, M., Navarro-Cerrillo, R. M., Guibal, F., & Abdoun, F. (2018). Structure, tree growth and dynamics of Cedrusatlantica Manetti Forests in Theniet El Had National Park (NW Alge-ria). Open Journal of Ecology, 8(8), 432-446. CrossRef
Sheikh, A. H., Palria, S., & Alam, A. (2011). Integration of GIS and universal soil loss equation (USLE) for soil loss estimation in a Himalayan watershed. Recent Research in Science and Technology, 3(3) Direct Link.
Shrestha, D. P. (1997). Assessment of soil erosion in the Nepalese Himalaya: A case study in LikhuKhola Valley, Middle Mountain Region. Land Husbandry, 2(1), 59-80. Direct Link.
Sonia, G., Hamdi, K., Abir, M., & Mohamed, K. (2022). The comparison between the Universal Soil Loss Equation (USLE) and the HEUSCH model for the assessment and mapping of water erosion of the Sidi Saad dam watershed in Tunisia. Arabian Journal of Geosciences, 15(6), 466. CrossRef
Stanchi, S., Falsone, G., & Bonifacio, E. (2015). Soil aggregation, erodibility, and erosion rates in mountain soils (NW Alps, Italy). Solid Earth, 6(2), 403-414. CrossRef
Stone, R. P., & Hilborn, D. (2001). Universal soil loss equation, USLE. Sejong City, China. Ministry of Agriculture, Food & Rural Affairs, Agriculture & Rural. CrossRef
Tamene, L., Adimassu, Z., Ellison, J., Yaekob, T., Woldearegay, K., Mekonnen, K., Thorne,P., & Le, Q. B. (2017). Mapping soil erosion hotspots and assessing the potential impacts of land management practices in the highlands of Ethiopia. Geomorphology, 292, 153-163. CrossRef
Tashayo, B., Honarbakhsh, A., Akbari, M., & Ostovari, Y. (2020). Digital mapping of Philip model parameters for prediction of water infiltration at the watershed scale in a semi-arid region of Iran. GeodermaRegional, 22, e00301. CrossRef
Toumi, S., Meddi, M., Mahé, G., & Brou, Y. T. (2013). Cartographie de l’érosion dans le bassin versant de l’Oued Mina en Algérie par télédétection et SIG [Mapping erosion in the Oued Mina watershed in Algeria using remote sensing and GIS]. Hydrological Sciences Journal, 58(7), 1542-1558. CrossRef
Ullah, W., Ahmad, K., Ullah, S., Tahir, A. A., Javed, M. F., Nazir, A., ... & Mohamed, A. (2023). Anal-ysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon, 9(2). CrossRef
Van der Knijff, J. M., Jones, R. J. A., & Montanarella, L. (2000). Soil erosion risk assessment in Eu-rope, EUR 19044 EN. Office for Official Publications of the European Communities, Luxem-bourg, 34. Direct Link.
Vrieling, A. (2006). Satellite remote sensing for water erosion assessment: A re-view. Catena, 65(1), 2-18. CrossRef
Wagari, M., & Tamiru, H. (2021). RUSLE model based annual soil loss quantification for soil ero-sion protection: A case of Fincha Catchment, Ethiopia. Air, Soil and Water Research, 14, CrossRef
Wang, G., Wente, S., Gertner, G. Z., & Anderson, A. (2002). Improvement in mapping vegetation cover factor for the universal soil loss equation by geostatistical methods with Landsat Thematic Mapper images. International Journal of Remote Sensing, 23(18), 3649-3667. CrossRef
Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conserva-tion planning (No. 537). Department of Agriculture, Science and Education Administration. Direct Link.
Xu, Z., Pan, B., Han, M., Zhu, J., & Tian, L. (2019). Spatial–temporal distribution of rainfall ero-sivity, erosivity density and correlation with El Niño–Southern Oscillation in the Huaihe River Basin, China. Ecological Informatics, 52, 14-25. CrossRef
Yesuph, A. Y., & Dagnew, A. B. (2019). Soil erosion mapping and severity analysis based on RUSLE model and local perception in the Beshillo Catchment of the Blue Nile Basin, Ethio-pia. Environmental Systems Research, 8(1), 1-21. CrossRef