Bio-treatment of Cheese Whey by Black Soldier Fly Larvae (Hermetia illucens) reared in Algeria

Authors

  • Tahar Hanafi Laboratory of Sciences, Food Technology and Sustainable Development, Faculty of Natural and Life Sciences, Saad Dahlab Blida-1 University, BP 270 (9100) Blida, Algeria
  • Kaci Zoubida Meziane Laboratory of Sciences, Food Technology and Sustainable Development, Faculty of Natural and Life Sciences, Saad Dahlab Blida-1 University, BP 270 (9100) Blida, Algeria
  • Smain Megateli Laboratory of Sciences, Food Technology and Sustainable Development, Faculty of Natural and Life Sciences, Saad Dahlab Blida-1 University, BP 270 (9100) Blida, Algeria
  • Badreddine Moussaoui Laboratory of Beneficial Microorganisms, Functional Food and Health, Faculty of Natural and Life Sciences, Abdelhamid Ibn Badis University, 27000 Mostaganem, Algeria
  • Laid Guemou Laboratory of Improvement and Promotion of Local Animal Productions, Faculty of Natural and Life Sciences, Ibn Khaldoun University, BP 78, 14000 Tiaret, Algeria
  • Bachir Reghioui Faculty of Natural and Life Sciences, Ibn Khaldoun University, BP 78, 14000 Tiaret, Algeria

DOI:

https://doi.org/10.11594/jaab.05.01.10

Keywords:

Bioconversion, Dairy by-product, Insect-based waste management, Sustainable agriculture, Spent coffee ground

Abstract

Whey, a by-product of cheese industry, poses environmental challenges when discharged untreated. This study aimed to mitigate whey pollution and transform it into value-added products using black soldier fly larvae (BSFL). By investigating whey effects on BSFL growth and performance, an innovative waste management strategy was explored. The five-old-day larvae were fed with four diets; dry spent coffee ground (SCG) as the control diet, while SCG wetted with acid, sweet and fermented whey were the test diets. The results showed that whey types increased significantly (p < 0.05) BSFL growth compared to the control, the dry weight (53.83±0.49 Vs 25.10±0.18 mg/larva), growth rate (1.59±0.06 Vs 0.44±0.01 mg/day) and survival rate (78.83±1.25 Vs 68.50±1.5 %) of larvae and reduced their development time (28.00±01 Vs 37.00±01 day). Furthermore, mixing SCG diet with whey enhanced positively their performance by increasing the waste reduction (26.73±0.81 Vs 16.87±0.37 %), waste reduction index (0.85±0.03 Vs 0.45±0.01 %/day), approximate digestibility (36.49±1.52 Vs 20.29±0.53 %) and bioconversion rate (17.94±0.47 Vs11.65±0.52%). Adding whey to SCG diet increased protein content of BSFL (40.11% vs. 34.18%) and reduced fat (36.06 vs. 37.87 %) in dry mass. Whey also improved the composition of frass by increasing the phosphorus and total nitrogen levels. This approach demonstrates a sustainable solution for dairy industries waste, contributing to the circular economy and offering potential applications in animal feed and fertilizer production.

Downloads

Download data is not yet available.

References

Acem, K., Saadi, T., & Benali, N. (2019). Influence of biological removal of lactose on the physical and chemical parameters of crude sweet whey. Acta Scientifica Naturalis, 6(2), 123-129. CrossRef

Banks, I. J., Gibson, W. T., & Cameron, M. M. (2014). Growth rates of black soldier fly larvae fed on fresh human faeces and their implication for improving sanitation. Tropical Medicine &International Health, 19(1), 14-22. CrossRef

Barba, F. J. (2021). An integrated approach for the valorization of cheese whey. Foods, 10(3), 564. CrossRef

Barragan-Fonseca, K. B., Dicke, M., & van Loon, J. J. (2017). Nutritional value of the black soldier fly (Hermetiaillucens L.) and its suitability as animal feed–a review. Journal of Insects as Food and Feed, 3(2), 105-120. CrossRef

Barragan-Fonseca, K. B. (2018). Flies are what they eat: Tailoring nutrition of Black Soldier Fly (Hermetiaillucens L.) for larval biomass production and fitness [Doctoral dissertation, Wa-geningen University and Research], the Netherlands. CrossRef

Bosco, F., Riccardo, C., & Marmo, L. (2018). An integrated cheese whey valorization pro-cess. Chemical Engineering Transactions, 64, 379-384.CrossRef

Boudjema, K., Fazouane-Naimi, F., Hellal, A., &Mechakra, A. (2009). Optimisation et modèle de production d’acide lactique par Streptococcus thermophilus sur lactosérum. Sciences & Technologie. C, Biotechnologies, 80-90.Direct Link.

Božanić, R., Barukčić, I., & Lisak, K. (2014). Possibilities of whey utilisation. Austin Journal of Nu-trition and Food Sciences, 2(7), 7. Direct Link.

de Albuquerque, J. N., Paulinetti, A. P., Lovato, G., Albanez, R., Ratusznei, S. M., & Rodrigues, J. A. D. (2020). Anaerobic sequencing batch reactors co-digesting whey and glycerin as a possi-ble solution for small and mid-size dairy industries: Environmental compliance and me-thane production. Applied Biochemistry and Biotechnology, 192, 979-998. CrossRef

Dehliz, A., Fethallah, R., Benyahia, I., Hammi, H., Bachir, H., & Lakhdari, W. (2023). Exploring the capability of Hermetiaillucens (Linnaeus, 1758)(Diptera: Stratiomyidae) to recycle organic waste Algeria. Revue des Bio Ressources, 13(2), 66-80. Direct Link.

Diener, S., Zurbrügg, C., &Tockner, K. (2009). Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Management & Research, 27(6), 603-610.CrossRef

Domingos, J. M., Martinez, G. A., Scoma, A., Fraraccio, S., Kerckhof, F. M., Boon, N., ... & Bertin, L. (2017). Effect of operational parameters in the continuous anaerobic fermentation of cheese whey on titers, yields, productivities, and microbial community structures. ACS Sus-tainable Chemistry & Engineering, 5(2), 1400-1407.CrossRef

Domingos, J. M., Puccio, S., Martinez, G. A., Amaral, N., Reis, M. A., Bandini, S., ... & Bertin, L. (2018). Cheese whey integrated valorisation: Production, concentration and exploitation of carboxylic acids for the production of polyhydroxyalkanoates by a fed-batch cul-ture. Chemical Engineering Journal, 336, 47-53. CrossRef

Dortmans B.M.A., Egger J., Diener S., & Zurbrügg C. (2021). Black Soldier Fly Biowaste Processing: A Step-by-Step Guide, (2nd Ed). Eawag-Swiss Federal Institute of Aquatic Science and Tech-nology.https://www.maktaba.org/book/783/black-soldier-fly-biowaste-processing-a-step-by-step-guide

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.CrossRef

Fischer, H., Romano, N., & Sinha, A. K. (2021). Conversion of spent coffee and donuts by black soldier fly (Hermetiaillucens) larvae into potential resources for animal and plant farm-ing. Insects, 12(4), 332. CrossRef

Gao, Z., Wang, W., Lu, X., Zhu, F., Liu, W., Wang, X., & Lei, C. (2019). Bioconversion performance and life table of black soldier fly (Hermetiaillucens) on fermented maize straw. Journal of Cleaner Production, 230, 974-980. CrossRef

Gärttling, D., & Schulz, H. (2022). Compilation of black soldier fly frass analyses. Journal of Soil Science and Plant Nutrition, 1-7. CrossRef

Gebiola, M., Garnica, A., Pagliaccia, D., Tomberlin, J. K., & Mauck, K. E. (2023). Impact of bokashi fermentation on life-history traits of black soldier fly Hermetiaillucens (Diptera: Strati-omyidae) larvae at an industrial scale. Journal of Insects as Food and Feed, 1-6. CrossRef

Giannetto, A., Oliva, S., Lanes, C. F. C., de AraújoPedron, F., Savastano, D., Baviera, C., ... & Fasulo, S. (2020). Hermetiaillucens (Diptera: Stratiomydae) larvae and prepupae: Biomass produc-tion, fatty acid profile and expression of key genes involved in lipid metabolism. Journal of Biotechnology, 307, 44-54.CrossRef

Gligorescu, A., Toft, S., Hauggaard-Nielsen, H., Axelsen, J. A., & Nielsen, S. A. (2018). Develop-ment, metabolism and nutrient composition of black soldier fly larvae (Hermetiaillucens; Diptera: Stratiomyidae) in relation to temperature and diet. Journal of Insects as Food and Feed, 4(2), 123-133. CrossRef

Gligorescu, A., Fischer, C. H., Larsen, P. F., Nørgaard, J. V., & Heckman, L. H. L. (2020). Production and optimization of Hermetiaillucens (L.) larvae reared on food waste and utilized as feed ingredient. Sustainability, 12(23), 9864. CrossRef

Gobbi, P., Martinez-Sanchez, A., & Rojo, S. (2013). The effects of larval diet on adult life-history traits of the black soldier fly, Hermetiaillucens (Diptera: Stratiomyidae). European Journal of Entomology, 110(3), 461.CrossRef

Gold, M., Tomberlin, J. K., Diener, S., Zurbrügg, C., & Mathys, A. (2018). Decomposition of bio-waste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A re-view. Waste Management, 82, 302-318. CrossRef

Gold, M., Cassar, C. M., Zurbrügg, C., Kreuzer, M., Boulos, S., Diener, S., & Mathys, A. (2020). Bio-waste treatment with black soldier fly larvae: Increasing performance through the formula-tion of biowastes based on protein and carbohydrates. Waste Management, 102, 319-329. CrossRef

Hadj Saadoun, J., Montevecchi, G., Zanasi, L., Bortolini, S., Macavei, L. I., Masino, F., ... & Antonelli, A. (2020). Lipid profile and growth of black soldier flies (Hermetiaillucens, Stratiomyidae) reared on by‐products from different food chains. Journal of the Science of Food and Agri-culture, 100(9), 3648-3657. CrossRef

Janssen, R. H., Vincken, J. P., van den Broek, L. A., Fogliano, V., & Lakemond, C. M. (2017). Nitro-gen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius di-aperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275-2278. CrossRef

Journal officiel de la république algérienne démocratique et populaire n°77 (2001). Loi n° 01-19 du 27 Ramadhan 1422 correspondant au 12 Décembre 2001, relative à la gestion, le con-trôle et l’élimination des déchets. P7. Direct Link.

Lappa, I. K., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., & Kopsa-helis, N. (2019). Cheese whey processing: integrated biorefinery concepts and emerging food applications. Foods, 8(8), 347. CrossRef

Li W, Li Q, Zheng L, Wang Y, Zhang J, Yu Z, & Zhang Y. (2015). Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresources of Technology. 194: 276e282. CrossRef

Liu, T., Awasthi, M. K., Chen, H., Duan, Y., Awasthi, S. K., & Zhang, Z. (2019). Performance of black soldier fly larvae (Diptera: Stratiomyidae) for manure composting and production of cleaner compost. Journal of Environmental Management, 251, 109593. CrossRef

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275. Direct Link.

Magee, K.; Halstead, J.; Small, R.; & Young, I. (2021) Valorisation of Organic Waste By-Products Using Black Soldier Fly (Hermetiaillucens) as a Bio-Convertor. Sustainability,13, 8345. CrossRef

Manurung, R., Supriatna, A., Esyanthi, R. R., & Putra, R. E. (2016). Bioconversion of rice straw waste by black soldier fly larvae (Hermetiaillucens L.): optimal feed rate for biomass pro-duction. Journal of Entomology and Zoology Studies, 4(4), 1036-1041. Direct Link.

Mathieu J. (1998). Initiation to milk physicochemistry. Lavoisier. Direct Link.

May BM. 1961. The occurrence in New Zealand and the life-history of the soldier fly Hermetiail-lucens (L.) (Diptera: Stratiomyidae). New Zealand Journal Science 4: 55-65. Direct Link.

Menino, R., Felizes, F., Castelo-Branco, M. A., Fareleira, P., Moreira, O., Nunes, R., & Murta, D. (2021). Agricultural value of Black Soldier Fly larvae frass as organic fertilizer on ryegrass. Heliyon, 7(1). CrossRef

Miranda, C. D., Cammack, J. A., & Tomberlin, J. K. (2019). Life-history traits of the black soldier fly, Hermetiaillucens (L.) (Diptera: Stratiomyidae), reared on three manure types. Animals, 9(5), 281. CrossRef

Myers, H. M., Tomberlin, J. K., Lambert, B. D., & Kattes, D. (2014). Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environmental Entomology, 37(1), 11-15. Direct Link.

Nation, J.L., (2008). Insects physiology and biochemistry (2nd Ed.). Taylor and Francis Group. CrossRef

Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In Mil-ler, RH. & Keeney, DR. (Ed). Methods of soil analysis: Part 2 Chemical and microbiological properties (vol. 9, p. 539-579). A.L. Page. CrossRef

Nguyen, T. T., Tomberlin, J. K., & Vanlaerhoven, S. (2015). Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environmental entomology, 44(2), 406-410.CrossRef

Nyakeri, E. M., Ogola, H. J., Ayieko, M. A., & Amimo, F. A. (2017). An open system for farming black soldier fly larvae as a source of proteins for smallscale poultry and fish produc-tion. Journal of Insects as Food and Feed, 3(1), 51-56.CrossRef

Official Methods of Analysis (2012) 19th Ed., AOAC (Association of Official Analytical Chemist) International, Gaithersburg, MD, Method 2001.11. Direct Link.

Official Methods of Analysis (2005) 18th Ed., AOAC (Association of Official Analytical Chemist) International, Gaithersburg, MD, Method 930.15. Direct Link.

Official Method of analysis (2005) 18th Ed., AOAC (Association of Official Analytical Chemist) International, Gaithersburg, MD, Method 978.10. Direct Link..

Official Method of analysis (2005) 18th Ed., AOAC (Association of Official Analytical Chemist) International, Gaithersburg, MD, Method 2003.05. Direct Link.

Official Methods of Analysis (2005) 18th Ed., AOAC (Association of Official Analytical Chemist) International, Gaithersburg, MD, Method 942.05. Direct Link.

Oonincx, D., van Huis, A., & van Loon, J.J.A., (2015a). Nutrient utilisation by black soldier flies fed with chicken, pig, or cow manure. Journal of Insects as Food and Feed 1, 131–139. CrossRef

Oonincx, D. G., Van Broekhoven, S., Van Huis, A., & van Loon, J. J. (2015b). Feed conversion, sur-vival and development, and composition of four insect species on diets composed of food by-products. PloS one, 10(12), e0144601. CrossRef

Palma, L., Fernandez-Bayo, J., Niemeier, D., Pitesky, M., & VanderGheynst, J. S. (2019). Managing high fiber food waste for the cultivation of black soldier fly larvae. NPJ Science of Food, 3(1), 15. CrossRef

Pansu M., & Gautheyrou J. (2006). Handbook of soil analysis: mineralogical, organic and inorgan-ic methods. Springer. Direct Link.

Papargyropoulou, E., Lozano, R., Steinberger, J. K., Wright, N., & bin Ujang, Z. (2014). The food waste hierarchy as a framework for the management of food surplus and food waste. Journal of Cleaner Production, 76, 106-115.CrossRef

Parra Paz, A. S., Carrejo, N. S., & Gómez Rodríguez, C. H. (2015). Effects of larval density and feeding rates on the bioconversion of vegetable waste using black soldier fly larvae Her-metiaillucens (L.),(Diptera: Stratiomyidae). Waste and Biomass Valorization, 6, 1059-1065.CrossRef

Permana, A. D., & Ramadhani Eka Putra, J. E. N. (2018). Growth of black soldier fly (Hermetiail-lucens) larvae fed on spent coffee ground. IOP Conference Series: Earth and Environmental Science, 187(012070), 1-7.CrossRef

Pescuma, M., de Valdez, G. F., & Mozzi, F. (2015). Whey-derived valuable products obtained by microbial fermentation. Applied Microbiology and Biotechnology, 99, 6183-6196.CrossRef

Pimentel, A. C., Montali, A., Bruno, D., & Tettamanti, G. (2017). Metabolic adjustment of the larval fat body in Hermetiaillucens to dietary conditions. Journal of Asia-Pacific Entomolo-gy, 20(4), 1307-1313.CrossRef

Pires, A. F., Marnotes, N. G., Rubio, O. D., Garcia, A. C., & Pereira, C. D. (2021). Dairy by-products: A review on the valorization of whey and second cheese whey. Foods, 10(5), 1067.CrossRef

Praeg, N., & Klammsteiner, T. (2023). Frass fertilizers from mass-reared insects: species varia-tion, heat treatment effects, and implications for soil application. bioRxiv, 2023-09.CrossRef

Rehman,. K. ur., Rehman, A., Cai, M., Zheng, L., Xiao, X., Somroo, A. A., ... & Zhang, J. (2017a). Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly lar-vae (Hermetiaillucens L.). Journal of Cleaner Production, 154, 366-373. CrossRef

Rehman, K. ur., Cai, M., Xiao, X., Zheng, L., Wang, H., Soomro, A. A., ... & Zhang, J. (2017b). Cellu-lose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetiaillucens L.). Journal of Environmental Management, 196, 458-465.CrossRef

Romano, N., Fischer, H., Kumar, V., Francis, S. A., & Sinha, A. K. (2021). Productivity, conversion ability, and biochemical composition of black soldier fly (Hermetiaillucens) larvae fed with sweet potato, spent coffee or dough. International Journal of Tropical Insect Science, 1-8.CrossRef

Rumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible in-sects. Molecular Nutrition & Food Research, 57(5), 802-823. CrossRef

Salomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S., & Savastano, D. (2017). Environ-mental impact of food waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens. Journal of Cleaner Production, 140, 890-905.CrossRef

Schmitt, E., & de Vries, W. (2020). Potential benefits of using Hermetiaillucens frass as a soil amendment on food production and for environmental impact reduction. Current Opinion in Green and Sustainable Chemistry, 25, 100335. CrossRef

Sommella, E., Pepe, G., Ventre, G., Pagano, F., Conte, G. M., Ostacolo, C., ... & Campiglia, P. (2016). Detailed peptide profiling of “Scotta”: From a dairy waste to a source of potential health-promoting compounds. Dairy Science & Technology, 96, 763-771.CrossRef

Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., ... & De Smet, S. (2017). Nutritional composition of black soldier fly (Hermetiaillucens) prepupae reared on different organic waste substrates. Journal of the Science of Food and Agricul-ture, 97(8), 2594-2600. CrossRef

Wang, Y. S., & Shelomi, M. (2017). Review of black soldier fly (Hermetiaillucens) as animal feed and human food. Foods 2017, 6(10), 91; CrossRef

Widyastuti R. A. D., Rahmat A., Warganegara H. A., Ramadhani W. S., Prasetyo B. & Riantini M. (2021). Chemical content of waste composting by black soldier fly (Hermetia illucens). IOP Conf. Series: Earth and Environmental Science, 739(1), 012003.CrossRef

Yadav, J. S. S., Yan, S., Pilli, S., Kumar, L., Tyagi, R. D., & Surampalli, R. Y. (2015). Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioac-tive peptides. Biotechnology advances, 33(6), 756-774.CrossRef

Yildirim‐Aksoy, M., Eljack, R., & Beck, B. H. (2020). Nutritional value of frass from black soldier fly larvae, Hermetiaillucens, in a channel catfish, Ictalurus punctatus, diet. Aquaculture nu-trition, 26(3), 812-819.CrossRef

Zotta, T., Solieri, L., Iacumin, L., Picozzi, C., & Gullo, M. (2020). Valorization of cheese whey using microbial fermentations. Applied Microbiology and Biotechnology, 104(7), 2749-2764.CrossRef

Downloads

Published

2024-06-25

How to Cite

Bio-treatment of Cheese Whey by Black Soldier Fly Larvae (Hermetia illucens) reared in Algeria . (2024). Journal of Agriculture and Applied Biology, 5(1), 125-141. https://doi.org/10.11594/jaab.05.01.10