Triticum durum productivity and adaptability of two genotypes under water deficit in Algerian high plains

Authors

  • Amina Belguendouz Department of Agronomic Sciences, Institute of Natural and Life Sciences, Nour Bachir University Center of El Bayadh, 32000 El Bayadh, Algeria.
  • Mohamed Sahnoune Laboratory of Plant Agro-biotechnology, Faculty of Natural and Life Sciences, Department of Agronomic and Nutrition Sciences, Ibn Khaldoun University of Tiaret, 14000 Tiaret, Algeria.

DOI:

https://doi.org/10.11594/jaab.05.02.09

Keywords:

Cultivars, Durum wheat, Grain filling, Vegetative organs, Water stress

Abstract

Over the past few decades, Algeria has experienced a significant decline in rainfall patterns, which has been exacerbated by increasing hot spells leading to elevated rates of evapotranspiration. This combination of factors has induced severe water stress, critically impacting agricultural productivity, particularly in cereal production. Recognizing the urgency of this issue, our study was conducted over two consecutive cropping seasons at the experimental agricultural site of Ibn Khaldoun University in Tiaret, located in the western region of Algeria. We specifically investigated the performance of two durum wheat cultivars, ACSAD 297 and CTA 159, under conditions of water stress typical of the Algerian high plains. Our research focused on the impacts of water deficits during the grain filling phase, assessing their effects on seed formation, seed quality, and overall yield development. The results highlighted that contributions from various plant components to grain filling were notably affected by water availability, with lower leaves contributing 22%, the flag leaf 15%, the ear 14%, the ear neck 10%, and awns less than 1%. Notably, the ACSAD 297 cultivar exhibited superior drought tolerance compared to CTA 159, indicating its potential for cultivation in arid conditions. Furthermore, we established strong correlations between grain diameter, thousand grain weight, and stem height, which could inform future breeding initiatives. These findings not only provide important targets for enhancing drought resistance in durum wheat but also have broader implications for improving wheat productivity in semi-arid regions around the world, contributing to food security in the face of climate change.

Downloads

Download data is not yet available.

References

Abid, M., Ali, S., Qi, L. K., Zahoor, R., Tian, Z., Jiang, D., Snider, J. L., & Dai, T. (2018). Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 8(1), 4615. CrossRef

Able, J., & Sissons, M. (2014). Durum wheat for the future: Challenges, research and prospects in the 21st century. Crop and Pasture Science, 65(1). CrossRef

Adda, A. (2006). Etude des mécanismes d'adaptation à la sécheresse chez le blé dur (Triticum durum Desf) [Study of the mechanisms of adaptation to drought in durum wheat (Triticum durum Desf)] (Doctoral dissertation, Oran University).

Ain, Q. U., Rasheed, A., Anwar, A., Mahmood, T., Imtiaz, M., Mahmood, T., Xia, X., He, Z., & Qurai-shi, U. M. (2015). Genome-wide association for grain yield under rainfed conditions in his-torical wheat cultivars from Pakistan. Frontiers in Plant Science, 6, 743. CrossRef

Alomari, D. Z., Eggert, K., von Wirén, N., Alqudah, A. M., Polley, A., Plieske, J., Ganal, M. W., Pillen, K., & Röder, M. S. (2018). Identifying candidate genes for enhancing grain Zn concentration in wheat. Frontiers in Plant Science, 9, 1313. CrossRef

Alqudah, A. M., Sallam, A., Baenziger, P. S., & Börner, A. (2020). GWAS: Fast-forwarding gene identification and characterization in temperate cereals: Lessons from barley–A review. Journal of Advanced Research, 22, 119-135. CrossRef

Alqudah, M., Sharma, R., Pasam, R. K., Graner, A., Kilian, B., & Schnurbusch, T. (2014). Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley. PLoS One, 9(11), 1-27. CrossRef

Amokrane, A., Bouzerzour, H., Benmahammed, A., & Djekoun, A. (2002). Caractérisation des va-riétés locales, syriennes et européennes de blé dur évaluées en zone semi-aride d'altitude [Characterization of local, Syrian and European durum wheat varieties evaluated in semi-arid altitude zones]. Sciences et Technologie, D, 33-38.

Belguendouz, A. (2008). Etude de la contribution des différents organes végétatifs dans le rem-plissage du grain du blé dur (Triticum durum Desf.) sous l'influence du déficit hydrique en plein champ [Study of the contribution of the different vegetative organs in the filling of the durum wheat grain (Triticum durum Desf.) under the influence of the water deficit in the open field] (Engineering Dissertation, Tiaret University).

Bhatta, M., Morgounov, A., Belamkar, V., & Baenziger, P. S. (2018). Genome-wide association study reveals novel genomic regions for grain yield and yield-related traits in drought-stressed synthetic hexaploid wheat. International Journal of Molecular Sciences, 19(10), 3011. CrossRef

Boudersa, N., Chaib, G., Atoui, A., Cherfia, R., Bouderbane, H., & Boudour, L. (2021). Assessment of biological and agronomic diversity of seven durum wheat varieties cultivated in the Northeastern region of Algeria. Biodiversitas: Journal of Biological Diversity, 22(2), 1025-1036. CrossRef

Bourouh, L., Souilah, N., Mouad, B., Chaib, G., Hazmoune, T., & Hamdi, B. (2023). Study of produc-tion and adaptation characters of some newly obtained genotypes of durum wheat (Triti-cum Durum Desf.) in sub-humid region (El Harrouch North-Eastern of Algeria). Journal of Bioresource Management, 10(2). Direct Link.

Bouzerzour, H., Benmahammed, A., Benkharbache, N., & Hassous, L. K. (2002). Contribution des nouvelles obtentions à l'amélioration et à la stabilité du rendement d'orge (Hordeum vul-gare L.) en zone semi-aride d'altitude [Contribution of new varieties to the improvement and stability of the yield of barley (Hordeum vulgare L.) in semi-arid zones at altitude]. Re-vue Recherche Agronomique de l'INRAA, 10, 45-58.

Çatav, Ş. S. (2023). Physiological responses of bread and durum wheat seeds to osmotic stress and salinity in the early germination stage. Botanica Serbica, 47, 325-336. CrossRef

Chaouachi, L., Marín-Sanz, M., Barro, F., & Karmous, C. (2024). Genetic diversity of durum wheat (Triticum turgidum ssp. durum) to mitigate abiotic stress: Drought, heat, and their combi-nation. PLoS One, 19(4), e0301018. CrossRef

Crespo-Herrera, L., Crossa, J., Huerta-Espino, J., Vargas, M., Mondal, S., Velu, G., Payne, T., Braun, H., & Singh, R. (2018). Genetic gains for grain yield in CIMMYT's semiarid wheat yield trials grown in suboptimal environments. Crop Science, 58, 1890. CrossRef

Demyanyuk, О., Oliinyk, K., Davydiuk, H., Yula, V., Shatkovska, K., & Mostoviak, I. (2023). Productivity of winter wheat under cultivation technologies of different intensity. Zemdir-byste-Agriculture, 110, 99-110. CrossRef

Devi, S., Singh, V., Yashveer, S., Dalal, M. S., Paras, Chawla, R., Akbarzai, D. K., & Chaurasia, H. (2023). Molecular characterization of bread wheat (Triticum aestivum) genotypes using SSR markers. The Indian Journal of Agricultural Sciences, 93(9), 948-953. CrossRef

Ercoli, L., Lulli, L., Mariotti, M., Masoni, A., & Arduini, I. (2008). Post-anthesis dry matter and ni-trogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. European Journal of Agronomy, 28(2), 138-147. CrossRef

Fellahi, Z. E. A., Boubellouta, T., Hannachi, A., Belguet, H., Louahdi, N., Benmahammed, A., Utki-na, A. O., & Rebouh, N. Y. (2024). Exploitation of the genetic variability of diverse metric traits of durum wheat (Triticum turgidum L. ssp. durum Desf.) cultivars for local adapta-tion to semi-arid regions of Algeria. Plants, 13(7), 934. CrossRef

Gaju, O., Matthew, P. R., Debbie, L. S., Sean, M., Gracia, R. V., José, C., & John, M. F. (2014). Rela-tionships between physiological traits, grain number and yield potential in a wheat DH population of large spike phenotype. Field Crop Research, 164(1), 126-13. CrossRef

Garcia, A., Gaju, O., Bowerman, A. F., Buck, S. A., Evans, J. R., Furbank, R. T., Gilliham, M., Millar, A. H., Pogson, B. J., Reynolds, M. P., Ruan, Y. L., Taylor, N. L., Tyerman, S. D., & Atkin, O. K. (2022). Enhancing crops yields through improvements in the efficiency of photosynthesis and respiration. New Phytologist, 237(1), 60-77. CrossRef

Iizumi, T., Furuya, J., Shen, Z., Kim, W., Okada, M., Fujimori, S., Hasegawa, T., & Nishimori, M. (2017). Responses of crop yield growth to global temperature and socioeconomic changes. Scientific Reports, 7, 1-10. CrossRef

Jamali, A., Sohrabi, Y., Siose, M. A., & Hoseinpanahi, F. (2020). Morphological and yield responses of 20 genotypes of bread wheat to drought stress. Archives of Biological Sciences, 72, 71-79. CrossRef

Kettani, R., Ferrahi, M., Nabloussi, A., Ziri, R., & Brhadda, N. (2023). Water stress effect on durum wheat (Triticum durum Desf.) advanced lines at flowering stage under controlled condi-tions. Journal of Agriculture and Food Research, 14, 100696. CrossRef

Kipp, S., Mistele, B., & Schmidhalter, U. (2014). The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity. Com-puters and Electronics in Agriculture, 100, 24-33. CrossRef

Li, H., Jiang, D., Wollenweber, B., Dai, T., & Cao, W. (2010). Effects of shading on morphology, physiology and grain yield of winter wheat. European Journal of Agronomy, 33(4), 267-275. CrossRef

Liu, J., Xu, Z., Fan, X., Zhou, Q., Cao, J., Wang, F., Ji, G., Yang, L., Feng, B., & Wang, T. (2018). A ge-nome-wide association study of wheat spike related traits in China. Frontiers in Plant Sci-ence, 9, 1584. CrossRef

Malik, P., Kumar, J., Sharma, S., Meher, P. K., Balyan, H. S., Gupta, P. K., & Sharma, S. (2022). GWAS for main effects and epistatic interactions for grain morphology traits in wheat. Physiology and Molecular Biology of Plants, 28(3), 651-668. CrossRef

Masoni, L., Ercoli, M., Mariotti, M., & Arduini, I. (2007). Post-anthesis accumulation and remobili-zation of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. Eu-ropean Journal of Agronomy, 26(3), 179-186. CrossRef

Maydup, M. L., Antonietta, M., Guiamet, J. J., & Tambussi, E. A. (2012). The contribution of green parts of the ear to grain filling in old and modern cultivars of bread wheat (Triticum aes-tivum L.): Evidence for genetic gains over the past century. Field Crop Research, 134, 208-215. CrossRef

Mohamed Badr Islam, D., Khalissa, C., Ali, G., Nassreddine, L., & Haroun, B. (2023). Assessment of durum wheat (Triticum durum) genotypes on grain filling parameters. The Indian Journal of Agricultural Sciences, 93(8), 833-838. CrossRef

Mondal, S., Rutkoski, J. E., Velu, G., Singh, P. K., Crespo-Herrera, L. A., Guzmán, C., Bhavani, S., Lan, C., He, X., & Singh, R. P. (2016). Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Frontiers in Plant Sciences, 7, 991. CrossRef

Mwadzingeni, L., Shimelis, H., Tesfay, S., & Tsilo, T. J. (2016). Screening of bread wheat geno-types for drought tolerance using phenotypic and proline analyses. Frontiers in Plant Sci-ence, 7, 1276. CrossRef

Pirnajmedin, F., Jaškūnė, K., & Majidi, M. M. (2024). Adaptive strategies to drought stress in grasses of the Poaceae family under climate change: Physiological, genetic and molecular perspectives: A review. Plant Physiology and Biochemistry, 108814. CrossRef

Qaseem, M. F., Qureshi, R., & Shaheen, H. (2019). Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Scientific Reports, 9, 6955. CrossRef

Rathan, N. D., Krishna, H., Ellur, R. K., Sehgal, D., Govindan, V., Ahlawat, A. K., Krishnappa, G., Jaiswal, J. P., Singh, J. B., SV, S., Ambati, D., Singh, S. K., Bajpai, K., & Mahendru-Singh, A. (2022). Genome-wide association study identifies loci and candidate genes for grain mi-cronutrients and quality traits in wheat (Triticum aestivum L.). Scientific Reports, 12(1), 6778. CrossRef

Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS One, 8, e66428. CrossRef

Sahnoune, M. (2005). Etude des paramètres morphologiques de résistance à la sécheresse chez l'orge (Hordeum Vulgar L.) [Study of morphological parameters of drought resistance in barley (Hordeum Vulgar L.)] (Doctoral dissertation, INA El harrach).

Samarah, N. H. (2005). Effects of drought stress on growth and yield of barley. Agronomy for Sus-tainable Development, 25, 145-149. CrossRef

Sanchez-Bragado, R., Vicente, R., Molero, G., Serret, M. D., Maydup, M. L., & Araus, J. L. (2020). New avenues for increasing yield and stability in C3 cereals: exploring ear photosynthesis. Current Opinion in Plant Biology, 56, 223-234. CrossRef

Saradadevi, R., Palta, J. A., & Siddique, K. H. M. (2017). ABA-mediated stomatal response in regu-lating water use during the development of terminal drought in wheat. Frontiers in Plant Science, 8, 1251. CrossRef

Sehgal, D., Mondal, S., Crespo-Herrera, L., Velu, G., Juliana, P., Huerta-Espino, J., Shrestha, S., Po-land, J., Singh, R., & Dreisigacker, S. (2020). Haplotype-based, genome-wide association study reveals stable genomic regions for grain yield in CIMMYT spring bread wheat. Fron-tiers in Genetics, 11, 589490. CrossRef

van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010--2050. Nature Food, 2, 494-501. CrossRef

Wasaya, A., Zhang, X., Fang, Q., & Yan, Z. (2018). Root phenotyping for drought tolerance in wheat: A review. Agronomy, 8(11), 241. CrossRef

Xu, C. L., Tao, H. B., Wang, P., & Wang, Z. L. (2016). Slight shading after anthesis increases photo-synthetic productivity and grain yield of winter wheat (Triticum aestivum L.) due to the de-laying of leaf senescence. Journal of Integrative Agriculture, 15(1), 63-75. CrossRef

Yang, J., & Zhang, J. (2010). Grain-filling problem in 'super' rice. Journal of Experimental Botany, 61, 1-5. CrossRef

Zhang, Y. H., Sun, N. N., Hong, J. P., Zhang, Q., Wang, C., Xue, Q. W., Zhou, S. L., Huang, Q., & Wang, Z. M. (2014). Effect of source-sink manipulation on photosynthetic characteristics of flag leaf and the remobilization of dry mass and nitrogen in vegetative organs of wheat. Journal of Integrative Agriculture, 13, 1680-1690. CrossRef

Downloads

Published

2024-09-29

How to Cite

Triticum durum productivity and adaptability of two genotypes under water deficit in Algerian high plains. (2024). Journal of Agriculture and Applied Biology, 5(2), 246-259. https://doi.org/10.11594/jaab.05.02.09