Main Article Content

Abstract

Recently, many horticultural crops have been subjected to study under hydroponic and aquaponic conditions, with a view to enhance their productivity. Nevertheless, a comparative analysis of these two soilless cultivation systems has rarely been undertaken, despite the fact that they represent two distinct approaches. This study’s objective was to compare between the aquaponic cultivation system and the hydroponic one, with the aim of identifying the most suitable soilless system for cultivating Genovese basil (O. basilicum L. cv. Genovese). For the purpose of this study, a factorial randomized complete block with three repetitions was conducted. It was carried out at the National Agronomic Institute of Tunisia under glasshouse conditions. Accordingly, the variation of the soilless cultivation systems effects was determined by measuring and evaluating plant growth, biomass production and photosynthetic performance of basil. Main results showed that plant height (25.69 ± 2.87 cm/plant), length of internodes (2.47 ± 0.17 cm/plant) and leaves number (10.89 ± 1.02 leaves/plant), fresh and dry weight of shoots (9.17 ± 0.49 g and 1.03 ± 0.05 g, respectively) and roots (5.22 ± 0.14 g and 0.37 ± 0.03 g, respectively) were significantly higher in aquaponically grown plants in comparison to hydroponics. However, no significant differences were noted between aquaponics and hydroponics regarding the shoot and root dry matter contents. In addition, the content of chlorophyll a (44.59 ± 3.42 µg∙mg-1 FW) and the efficiency of the photosystem II (Fv/Fm) (0.83 ± 0.01) were significantly higher in basil grown in aquaponics when compared to the hydroponic system. Overall, these findings indicate that aquaponics seems to be more suitable for growing basil plants than the hydroponic system.

Article Details

How to Cite
Annabi, H. A., Laribi, B., & Bettaieb, T. (2025). Cultivation of Genovese basil (Ocimum basilicum L. cv. Genovese) in aquaponic and hydroponic systems: A comparative study. Journal of Agriculture and Applied Biology, 6(2), 264-276. https://doi.org/10.11594/jaab.06.02.10

References

Afsharipoor, S., & Roosta, H.R. (2010). Effect of different planting beds on growth and develop-ment of strawberry in hydroponic and aquaponic cultivation systems. Plant Ecophysiology, 2(2): 61-66.
Al-Snafi, A.E. (2021). Chemical constituents and pharmacological effects of Ocimum basilicum- A review. International Journal of Pharmaceutical Research, 13(2): 2997-3013. CrossRef
Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1): 1-15. CrossRef
Atique, F., Lindholm-Lehto, P., & Pirhonen, J. (2022). Is aquaponics beneficial in terms of fish and plant growth and water quality in comparison to separate recirculating aquaculture and hydroponic systems? Water, 14, Article 1447. CrossRef
Baker, N. R. & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Bota-ny, 55(403): 1607-1621. CrossRef
Bartelme, R.P., Smith, M.C., Sepulveda-Villet, O.J., & Newton, R.J. (2019). Component microenvi-ronments and system biogeography structure microorganisms distributions in recirculating aquaculture and aquaponic systems. mSphere, 4(4), Article e00143-19. CrossRef
Bulgari, R., Baldi, A., Ferrante, A., & Lenzi, A. (2016). Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. New Zealand Journal of Crop and Horti-cultural Science, 45(2): 119-129. CrossRef
Chen, P., Zhu, G., Kim, H.J., Brown, P.B. & Huang, Y.J. (2020). Comparative life cycle assessment of aquaponics and hydroponics in the Midwestern United States. Journal of Cleaner Produc-tion, 275: Article 122888. CrossRef
Eck, M., Körner, O. & Jijakli, M.H. (2019a). Nutrient cycling in aquaponics systems. In S. Goddek, A. Joyce, B. Kotzen, & G.M. Burnell (Eds.), Aquaponics food production systems combined aquaculture and hydroponic production technologies for the future (pp. 231-246). Springer. CrossRef
Eck, M., Sare, A.R., Massart, S., Scmautz, Z., Junge, R., Smits, T.H.M., & Jijakli, M.H. (2019b). Ex-ploring bacterial communities in aquaponic systems. Water, 11(2): Article 260. CrossRef
Food and Agriculture Organization of the United Nations & Intergovernmental Technical Panel on Soils. (2015). Status of the world’s soil resources (SWSR) – Main report. Food and
Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. Direct Link.
Food and Agriculture Organization of the United Nations. (2016). L’action de la FAO face au changement climatique. Adapter l’agriculture au changement climatique. [FAO action on climate change. Adapting agriculture to climate change.] Direct Link.
Ferrarezi, R.S., & Bailey, D.S. (2019). Basil performance evaluation in aquaponics. HortTechnolo-gy, 29(1), 85-93. CrossRef
Filip, S. (2017). Basil (Ocimum basilicum L.) a source of valuable phytonutrients. International Journal of Clinical Nutrition and Dietetics, 3, Article 118. CrossRef
Foliard, T. (2014). Le petit Larousse des huiles essentielles [The little Larousse of essential oils] Larousse Publishing.
Forchino, A.A., Lourguioui, H., Brigolin, D., & Pastres, R. (2017). Aquaponics and sustainability: the comparison of two different aquaponic techniques using the Life Cycle Assessment (LCA). Aquacultural Engineering, 77, 80-88. CrossRef
Goddek, S., Joyce, A., Kotzen, B. & Dos-Santos, M. (2019). Aquaponics and global food challenges. In S. Goddek, A. Joyce, B. Kotzen, & G.M. Burnell (Eds.), Aquaponics food production systems combined aquaculture and hydroponic production technologies for the future (pp. 3-17). Springer. CrossRef
Greenfeld, A., Becker, N., Bornman J.F., Spatari, S., & Angel, D.L. (2022). Is aquaponics good for the environment? -evaluation of environmental impact through life cycle assessment stud-ies on aquaponics systems. Aquaculture International, 30, 305-322. CrossRef
Guidi, L., Lo Piccolo, E., & Landi M. (2019). Chlorophyll fluorescence, photinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Frontiers in Plant Sci-ence, 10: Article 00174. CrossRef
Hoagland, D.R., & Arnon, D.I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station, 347(2), 357-359. Direct Link.
Kaur, P., Verma, K., Kumar Singh, A., Kumar, R., & Singh S. (2024). Co-cultivation of sweet basil (Ocimum basilicum L.) with food crops for efficient resource utilization and increasing the farm profits. Industrial Crops and Products, 214, Article 118495. CrossRef
Knaus, U., Appelbaum, S., & Palm, H.W. (2018). Significant factors affecting the economic sus-tainability of closed backyard aquaponics systems. Part IV: autumn herbs and polyponics. Aquaculture, Aquarium, Conservation & Legislation-International Journal of the Bioflux So-ciety, 11(6), 1760-1775. Direct Link.
Knaus, U., Pribbernow, M., Xu, L., Appelbaum, S., & Palm, H.W. (2020). Basil (Ocimum basilicum L.) cultivation in decoupled aquaponics with three hydro-components (Grow Pipes, Raft, Gravel) and African Catfish (Clarias gariepinus) production in northern Germany. Sustaina-bility, 12(20), Article 8745. CrossRef
Knaus, U., Zimmermann, J., Appelbaum, S., & Palm, H.W. (2022). Spearmint (Mentha spicata) cul-tivation in decoupled aquaponics with three hydro-components (Grow pipes, Raft, Gravel) and African catfish (Clarias gariepinus) production in Northern Germany. Sustainability, 14(1), Article 305. CrossRef
Kolega, S., Miras-Moreno, B., Buffagni, V., Lucini, L., Valentinuzzi, F., Maver, M., Mimmo, T., Trevisan, M., Pii, Y., & Cesco, S. (2020). Nutraceutical profiles of two hydroponically grown sweet basil cultivars as affected by the composition of the nutrient solution and the nocula-tion with Azospirillum brasilense. Frontiers in Plant Science, 11, Article 596000. CrossRef
Laribi, B., Annabi, H.A., & Bettaieb, T. (2023). Effects of Ulva intestinalis Linnaeus seaweed liquid extract on plant growth, photosynthetic performance and water status of two hydroponical-ly grown Lamiaceae species: Peppermint (Mentha x piperita L.) and purple basil (Ocimum basilicum var. purpurascens Benth.). South African Journal of Botany, 158, 63-72. CrossRef
Mackinney, G. (1941). Absorption of light by chlorophyll solutions. Journal of Biological Chemis-try, 140(2), 315-322. CrossRef
Milenković, L., Stanojević, J., Cvetković, D., Stanojević, L., Lalević, D., Šunić, L., Fallik, E. & Ilić, Z.S. (2019). New technology in basil production with high essential oil yield and quality. In-dustrial Crops and Products, 140(1), Article 111718. CrossRef
Moderalli, G.C., Vanacore, L., Rouphael, Y., Langellotti, A.L., Masi, P., De Pascale, S. & Cirillo, C. (2023). Hydroponic and aquaponic floating Raft systems elicit differential growth and qual-ity responses to consecutive cuts of basil crop. Plants, 12(6), Article 1355. CrossRef
Monsees, H., Keitel, J., Paul M., Kloas, W., & Wuertz, S. (2017). Potential of aquacultural sludge treatment for aquaponics: evaluation of nutrient mobilization under aerobic and anaerobic conditions. Aquaculture Environment Interactions, 9, 9-18. CrossRef
Mourantian, A., Aslanidou, M., Mente, E., Katsoulas, N., & Levizou, E. (2023). Basil functional and growth responses when cultivated via different aquaponics and hydroponics systems. PeerJ, 11, Article e15664. Direct Link.
Nkcukankcuka, M., Jimoh, M.O., Griesel, G., & Laubscher, C.P. (2021). Growth characteristics, chlorophyll content and nutrients uptake in Tetragonia decumbens Mill. Cultivated under different fertigation regimes in hydroponics. Crop and Pasture Science, 73(2), 67-76. Cross-Ref
Padalia, R., Verma, R.S., & Chauhan, A. (2016). Influence of harvest cut heights on aroma profile of Ocimum basilicum L., O. kilimandscharicum Guerke and O. tenuiflorum L. Journal of Es-sential Oil Bearing Plants, 19(6), 1442-1453. CrossRef
Patil, S.T., Kadam, U.S., Mane, M.S., Mahale, D.M., & Dhekale, J.S. (2020). Hydroponic growth me-dia (substrate): A review. International Research Journal of Pure & Applied Chemistry, 21(23), 106-113. CrossRef
Pilbeam, D.J. (2010). The utilization of nitrogen by plants: A whole plant perspective. In C.H. Foyer & H. Zhang (Eds.), Annual Plant Reviews (Vol. 42, pp. 305-351). Wiley. CrossRef
Pollard, G., Ward, J.D., & Koth, B. (2017). Aquaponics in urban agriculture: Social acceptance and urban food planning. Horticulturae, 3(2), Article 39. CrossRef
Pomoni, D.I., Koukou, M.K., Vrachopoulos, M.G., & Vasiliadis, L. (2023). A review of hydroponics and conventional agriculture based on energy consumption, environmental impact and land use. Energies, 16(4), Article 1690. CrossRef
Puccinelli, M., Landi, M., Maggini, R., Pardossi, A., & Incrocci, L. (2021). Iodine biofortification of sweet basil and lettuce grown in two hydroponic systems. Scientia Horticulturae, 276, Article 109783. CrossRef
Putra, A.P., & Yuliando, H. (2015). Soilless culture system to support water use efficiency and product quality: A review. Agriculture and Agricultural Science Procedia, 3, 283-288. CrossRef
Roosta, H.R., & Hamidpour, M. (2011). Effects of foliar application of some macro- and micro- nutrients on tomato plants in aquaponic and hydroponic systems. Scientia Horticulturae, 129(3), 396-402. CrossRef
Roosta, H.R., & Mohsenian, Y. (2012). Effects of foliar spray of different Fe sources on pepper (Capsicum annum L.) plants in aquaponic system. Scientia Horticulturae, 146, 182-191. CrossRef
Rufí-Salís, M., Calvo, M.J., Petit-Boix, A., Villalba, G., & Gabarrell, X. (2020). Exploring nutrient recovery from hydroponics in urban agriculture: An environmental assessment. Resources, Conservation and Recycling, 155, Article 104683. CrossRef
Saha, S., Monroe, A., & Day, M.R. (2016). Growth, yield, plant quality and nutrition of basil (Oci-mum basilicum L.) under soilless agricultural systems. Annals of Agricultural Science, 61(2), 181-186. CrossRef
Sanchez, F.A., Vivian-Rogers, V.R., & Urakawa, H. (2019). Tilapia recirculating aquaculture sys-tems as a source of plant growth promoting bacteria. Aquaculture Research, 50, 2054-2065. CrossRef
Sapkota, S., Sapkota, S., & Liu, Z. (2019). Effects of nutrient composition and lettuce cultivar on crop production in hydroponic culture. Horticulturae, 5, Article 72. CrossRef
SAS Institute. (2002). SAS/STAT User’s Guide, version 9.0 SAS Institute Inc, Cary, NC.
Schmautz, Z., Graber, A., Jaenicke, S., Goesmann, A., Junge R., & Smits, T.H.M. (2017). Microbial diversity in different compartments of an aquaponic system. Archives of Microbiology, 199, 613-620. Direct Link.
Schmautz, Z., Espinal, C.A., Smits, T.H.M., Frossard, E., & Junge, R. (2021). Nitrogen transfor-mations across compartments of an aquaponic system. Aquacultural Engineering, 92, Arti-cle 102145. CrossRef
Schwartz, P.A., Anderson, T.S., & Timmons, M.B. (2019). Predictive equations for butterhead let-tuce (Lactuca sativa cv. Flandria) root surface area grown in aquaponic conditions. Horti-culturae, 5(2), Article 39. CrossRef
Suhl, J., Dannehl, D., Kloas, W., Baganz, D., Jobs, S., Scheibe, G., & Schmidt, U. (2016). Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hy-droponics. Agricultural Water Management, 178: 335-344. CrossRef
Torrecilas, A., Leon, A., Del Amor, F. & Martinez-Mompean, M.C. (1984). Determinacion rapida de clorofila en discos foliares de limonero. [A rapid determination of chlorophyll in foliar disks on lemon tree]. Fruits, 39 (10), 617-622. Direct Link.
Treftz, C., & Omaye, S.T. (2016). Hydroponics: potential for augmenting sustainable food produc-tion in non-arable regions. Nutrition and Food Science, 46 (5), 672-684. Direct Link.
Tzortzakis, N., Nicola, S., Savvas, D., & Voogt, W. (2020). Editorial: Soilless cultivation through an intensive crop production scheme. Management strategies, challenges and future direc-tions. Frontiers in Plant Science, 11, Article 363. CrossRef
Vandam, D.A., Anderson, T.S., de Villiers, D., & Timmons M.B. (2017). Growth and tissue ele-mental composition response of spinach (Spinacia oleracea) to hydroponic and aquaponic water quality conditions. Horticulturae, 3(2), Article 32. CrossRef
Vartak A., Sonawane S., Alim H., Patel N., Hamrouni L., Khan J., & Ali A. (2022). Medicinal and aromatic plants in the cosmetics industry. In Á. Máthé & I. Ali Khan (Eds.), Medicinal and aromatic plants of India (Vol. 1, pp. 341-364). Springer International Publishing. Direct Link.
Verdoliva, S.G., Gwyn-Jones, D., Detheridge, A., & Robson, P. (2021). Controlled comparisons be-tween soil and hydroponic systems reveal increased water use efficiency and higher lyco-pene and β-carotene contents in hydroponically grown tomatoes. Scientia Horticulturae, 279, Article 109896. CrossRef
Walters, K.J., & Currey, C.J. (2018). Effects of nutrient solution concentration and daily light inte-gral on growth and nutrient concentration of several basil species in hydroponic produc-tion. HortScience, 53(9), 1319-1325. CrossRef
Walters, K.J., & Currey, C.J. (2019). Growth and development of basil species in response to tem-perature. HortScience, 54(11): 1915-1920. CrossRef
Yang, T. & Kim, H.J. (2020). Characterizing nutrient composition and concentration in tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. Water, 12(5), Article 1259. CrossRef