Main Article Content

Abstract

The Broad bean (Vicia faba L.) is a legume with many virtues, commonly cultivated in the Mediterranean region, especially in Algeria, valued for its high nutritional properties and role in crop rotation systems. Moreover, as a natural green fertilizer, estab-lishing symbiotic relationship with arbuscular mycorrhizal fungi found in the soil, faba bean brings significant agronomic benefits, promotes biodiversity and contributes to soil preservation by limiting erosion. This study was conducted in a faba bean cropland site in the northwestern region of Algeria (Sebkha-Wilaya of Oran) in 2022 to assess in natura plant roots mycorrhi-zal colonization, soil characteristics and its biological fertility through mycorrhizal soil infectivity (MSI) and the spore’s abun-dance estimation. Physical and chemical properties analysis showed that the soil had a fine loamy-clay texture, with an alka-line pH, and low phosphorus content. It was moderately poor in organic matter and total nitrogen with less than 12 C/N ratio. In natura Vicia faba L. root fragments mycorrhizal colonization rate was very high (100%) with a highly mycorrhizal intensity (80.45%) and an arbuscular structures abundance (99.28%). Spores extracted from rhizosphere soil sample density were 1657±15.09 spores/100 g. Furthermore, results showed that Vi-cia faba rhizosphere cropland soil was high mycorrhizal infectiv-ity was high with 2.36±1.02g MSI Units/100 g. All results strong-ly suggested that Sebkha Vicia faba cropland soil has a good bio-logical fertility with a significant spore density. These results support the characterization of the soil as a potential biofertiliz-er.

Article Details

How to Cite
Abdedjelil, A. C., Kadiri, A., & Ighilhariz, Z. (2025). Faba bean (Vicia faba L.) in natura mycorrhizal status evaluation and broad bean cropland soil biological fertility. Journal of Agriculture and Applied Biology, 6(2), 198-209. https://doi.org/10.11594/jaab.06.02.05

References

Amani, Y. F. C., M’bo, K. A. A., Cherif, M., Koné, D., & Kouamé, C. (2023). Diversity of arbuscular mycorrhizal fungi associated with cocoa trees (Theobroma cacao L.) in Ivory Coast. European Scientific Journal, ESJ, 19, 179-202. CrossRef
Andrango, C., Cueva, M., Viera, W., & Duchicela Escobar, J. (2016). Evaluation of methods to es-timate mycorrhizal inoculums potential in field soils. Revista Ciencia, 18(3), 329-352. Direct Link.
Bai, X., Li, J., & Chang, S. (2023). Effects of different carbon and nitrogen ratios on nitrogen re-moval efficiency and microbial communities in constructed wetlands. Water, 15(24), 4272. CrossRef
Benkhoua, N., Hafidi, M., Badri, W., Baudoin, E., Thioulouse, J., Prin, Y., Galiana, A., Sanguin, H., & Duponnois, R. (2017). Management of the mycorrhizal soil infectivity with Crotalaria ochroleuca, an indigenous wild legume in the tropics: Impacts on microbial functional di-versity involved in phosphorus mobilization processes in a sahelian soil. Ecological Engi-neering, 101, 130-136. CrossRef
Bhantana, P., Rana, M. S., Sun, X. C., Moussa, M. G., Saleem, M. H., Syaifudin, M., Shah, A., Poudel, A., Pun, A. B., Bhat, M. A., Mandal, D. L., Shah, S., Zhihao D., Tan, Q., & Hu, C. X. (2021). Ar-buscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis, 84, 19-37. CrossRef
Bonjean, A. et Fortin, J. (2023). Mycorrhizae, plant-fungus interactions still underexploited.. In Abis, S. & Marie, A. (dir.), The Demeter 2023 Agriculture and alimentation : Sustainability put to the test. (p. 251 -264 ). IRIS editions. Direct Link.
Bossou, L. D. R., Houngnandan, H. B., Adandonon, A., Zoundji, C., & Houngnandan, P. (2019). Di-versity of arbuscular mycorrhizal fungi associated with maize (Zea mays L.) cultivation in Benin. International Journal of Biological and Chemistery Sciences, 13 (2), 597-609. Cross-Ref
Boyno, G., Demir, S., Rezaee Danesh, Y., Durak, E. D., Çevik, R., Farda, B., ... & Pellegrini, M. (2023). A new technique for the extraction of arbuscular mycorrhizae fungal spores from rhizosphere. Journal of Fungi, 9(8), 845. CrossRef
Brundrett, M. (1991). Mycorrhizas in natural ecosystems. In Advances in ecological research (Vol. 21, pp. 171-313). Academic Press CrossRef
Cheng, Y., Chen, K., He, D., He, Y., Lei, Y., & Sun, Y. (2024). Diversity of arbuscular mycorrhizal fungi of the rhizosphere of Lycium barbarum L. from four main producing areas in North-west China and their effect on plant growth. Journal of Fungi, 10(4), 286. CrossRef
De Oliveira, V. H., Mazzafera, P., & de Andrade, S. A. L. (2022). Alleviation of low phosphorus stress in Eucalyptus grandis by arbuscular mycorrhizal symbiosis and excess Mn. Plant Stress, 5, 100104.CrossRef
Dejana, L., Ramírez-Serrano, B., Rivero, J., Gamir, J., Lopez-Raez, J. A., & Pozo, M. J. (2022). Phos-phorus availability drives mycorrhiza induced resistance in tomato. Frontiers in Plant Sci-ence, 13, 1060926. CrossRef
Diop, I., Ndoye, F., Diédhiou, A. G., Krasova-Wade, T., Dorego, F., Noba, K., AmbrosiJ. P., & Kane, A. (2021). Diversity and spore density of arbuscular mycorrhizal fungi in the rhizosphere of Cowpea (Vigna unguiculata [L.] Walp.) cultivated in different soils in Senegal. Journal of Animal and Plant Science, 48(1), 8552-8565. Direct Link.
Diouf, P., Diédhiou, S., Goudiaby, A. O. K., Fall, D., Ngom, D., Diallo, M. D., & Ndoye, I. (2019). Ef-fet des différentes doses du sable et du terreau sur la mycorhization et la croissance de Landolphia heudelotii (A. DC.) dans des conditions semi-contrôlées en pépinière, 2(3), 59-66.
Direct Link.
Dounas, H., Bourhia, M., Outamamat, E., Bouskout, M., Nafidi, H. A., El-Sheikh, M. A., Al-Abbadi, G. A. & Ouahmane, L. (2022). Effects of dual symbiotic interactions performed by the exotic tree golden wreath wattle (Acacia cyanophylla Lindl.) on soil fertility in a costal sand dune ecosystem. Frontiers in environmental Science, 10, 895462. CrossRef
Duponnois R., Bâ A. M., Plenchette C., Thioulouse J., Cadet P. (2000). Effect of follow on popula-tions of arbuscular mycorrhizal fungi in Senegal; John Libbey, p-325. CrossRef
Duponnois R., Plenchette C., Thioulouse J., Cadet P. (2001). The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Sene-gal. Applied Soil Ecology; 17(3): 239-251.CrossRef
Etesami, H., & Glick, B. R. (2020). Exploring the potential: can mycorrhizal fungi and hyphos-phere silicate-solubilizing bacteria synergistically alleviate cadmium stress in plants?. Cur-rent Research in Biotechnology, 100158 CrossRef
Etesami, H., Jeong, B. R., & Glick, B. R. (2021). Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Frontiers in Plant Science, 12, 699618. CrossRef
Fakhech, A., Ouahmane, L., & Hafidi, M. (2020). Analysis of symbiotic microbial status of Atlantic sand dunes forest and its effects on Acacia gummifera and Retama monosperma (Fabaceae) to be used in reforestation. Journal of Forestry Research, 31(4), 1309-1317. CrossRef
Fall, A. F., Nakabonge, G., Ssekandi, J., Founoune-Mboup, H., Apori, S. O., Ndiaye, A., Badji, A., & Ngom, K. (2022). Roles of arbuscular mycorrhizal fungi on soil fertility: contribution in the improvement of physical, chemical, and biological properties of the soil. Frontiers in Fungal Biology, 3, 723892. CrossRef
Firdu, Z., & Dida, G. (2024). Extraction, identification and mass production of arbuscular mycor-rhizal fungi (AMF) from faba bean (Vicia faba L.) rhizosphere soils using maize (Zea mays L.) as a host plant. Heliyon, 10(17). CrossRef
Fortin, J. A., Plenchette C., Piché Y. (2016). Mycorrhizae: The rise of the new green revolution; 2nd edition Quae p 1-184.
Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving & decanting. Transactions of the British Mycological society; 46(2): 235-244. CrossRef
Hadou el hadj, D., Tellah, S., Goumeida, K., Aitouakli, S., Tifest, C., Ammi, N., Ratet, P., Pulvento, C., & Sellami, M. H. (2022). Evaluation of adaptability of different faba bean landraces under Mediterranean field conditions of central-northern Algeria. Agronomy, 12(7), 1660. Cross-Ref
Hayman, D. S. (1983). The physiology of vesicular–arbuscular endomycorrhizal symbio-sis. Canadian Journal of Botany, 61(3), 944-963. CrossRef
Hussain, A., Faizan, S., Kumari, R., & Pandey, E. (2024). Morphological and biochemical respons-es of Vicia faba (faba beans) grown on fly ash amended soil in the presence of Rhizobium leguminosarum and arbuscular mycorrhizal fungus. Environmental Science and Pollution Research, 31(31), 44361-44373. CrossRef
Kalamulla, R., Sandaruwan, D., Karunarathna, S. C., Stephenson, S. L., Tibpromma, S., Elgorban, A. M., Al-Rejaie, S., Yapa, P.N. & Suwannarach, N. (2022). Assessment of community dynam-ics of arbuscular mycorrhizal fungi in the Rice (Oryza sativa L.) Rhizosphere and potential application as biofertilizer. Sustainability, 14(24), 16537. CrossRef
Kour, D., Rana, K.L., Kaur, T., Yadav, N., Yadav, A.N., Kumar, M., Kumar, V., Dhaliwal, H. S. &, Saxena, A. K. (2021). Biodiversity, current developments and potential biotechnological ap-plications of phosphorus-solubilizing and-mobilizing microbes: a review. Pedosphere, 31(1), 43-75. CrossRef
Lu, N., Zhang, P., Wang, P., Wang, X., Ji, B., & Mu, J. (2022). Environmental factors affect the ar-buscular mycorrhizal fungal community through the status of host plants in three patterns of Chinese fir in southern China. Global Ecology and Conservation, 36, e02121. CrossRef
Luginbuehl, L. H., & Oldroyd, G. E. (2017). Understanding the arbuscule at the heart of endomy-corrhizal symbioses in plants. Current Biology, 27(17), R952-R963. CrossRef
Manjula, A., Payal, A. S., Verma, R., & Gautam, A. (2022). Effects of arbuscular mycorrhizal fungi on growth parameters of Pisum sativum. Asian Journal of Mycology, 5, 1-10. CrossRef
Mosbah, M., Philippe, D. L., & Mohamed, M. (2018). Molecular identification of arbuscular my-corrhizal fungal spores associated to the rhizosphere of Retama raetam in Tunisia. Soil Sci-ence and Plant Nutrition, 64(3), 335–341. CrossRef
Pacioni, G. (1992). 16 Wet-sieving and decanting techniques for the extraction of spores of ve-sicular-arbuscular fungi. Methods in Microbiology, 24, 317-322. CrossRef
Pasqualone, A., Abdallah, A., & Summo, C. (2020). Symbolic meaning and use of broad beans in traditional foods of the Mediterranean Basin and the Middle East. Journal of Ethnic Foods, 7(1), 39. CrossRef
Pereira, S., Mucha, Â., Gonçalves, B., Bacelar, E., Látr, A., Ferreira, H., Oliveira, I., Rosa, E., & Marques, G. (2019). Improvement of some growth and yield parameters of faba bean (Vicia faba) by inoculation with Rhizobium laguerreae and arbuscular mycorrhizal fungi. Crop and Pasture Science, 70(7), 595-605. CrossRef
Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining para-sitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infec-tion. Transactions of the British mycological Society, 55(1), 158-IN18. CrossRef
Pimprikar, P., & Gutjahr, C. (2018). Transcriptional regulation of arbuscular mycorrhiza devel-opment. Plant and Cell Physiology, 59(4), 678-695. CrossRef
Plenchette, C. (2000). Receptiveness of some tropical soils from banana fields in Martinique to the arbuscular fungus Glomus intraradices. Applied Soil Ecology, 15(3), 253-260. CrossRef
Plenchette, C., Fortin, J.A. & Furlan, V. (1983). Growth responses of several plant species to my-corrhizae in a soil of moderate P-fertility. Plant Soil 70, 211–217. CrossRef
Plenchette, C., Fortin, J. A., & Furlan, V. (1983). Growth responses of several plant species to my-corrhizae in a soil of moderate P-fertility: I. Mycorrhizal dependency under field conditions. Plant and soil, 70, 199-209. CrossRef
Plenchette, C., Perrin, R., & Duvert, P. (1989). The concept of soil infectivity and a method for its determination as applied to endomycorrhizas. Canadian Journal of Botany, 67(1), 112-115. CrossRef
Prin, Y., Le Roux, C., Galiana, A., & Duponnois, R. (2017). Lost from sight: bringing together the symbiotic partners of cultivated legumes, Innovations Agronomiques, 60, 11-19. CrossRef
Ruisi, P., Amato, G., Badagliacca, G., Frenda, A. S., Giambalvo, D., & Di Miceli, G. (2017). Agro-ecological benefits of faba bean for rainfed Mediterranean cropping systems. Italian Jour-nal of Agronomy, 12(3). CrossRef
Saadia, B. D., Fatima, Nehal., Imane, M. H., Amina, Kadiri., & Meryem, Bouchakour. (2024). As-sessment of Mycorrhizal Fungal Diversity in legumes (Medicago sativa, Medicago truncatu-la and Trifolium rubens) from Algeria and their influence on soil physicochemical and mi-crobiological properties. Agricultural Science Digest, 44(1): 06-13. Direct Link.
Sánchez-Navarro, V., Zornoza, R., Faz, Á., Egea-Gilabert, C., Ros, M., Pascual, J. A., & Fernández, J. A. (2020). Inoculation with different nitrogen-fixing bacteria and arbuscular mycorrhiza af-fects grain protein content and nodule bacterial communities of a fava bean crop. Agrono-my, 10(6), 768. CrossRef
Sharif, M., & Moawad, A. M. (2006). Arbuscular mycorrhizal incidence and infectivity of crops in North West Frontier Province of Pakistan. World J Agric Sci, 2(2), 123-132. CrossRef
Šmilauer, P., Košnar, J., Kotilínek, M., Pecháčková, S., & Šmilauerová, M. (2021). Host age and surrounding vegetation affect the community and colonization rates of arbuscular mycor-rhizal fungi in a temperate grassland. New Phytologist, 232(1), 290-302. CrossRef
Suharno, S., Soetarto, E. S., Sancayaningsih, R. P., & Kasiamdari, R. S. (2017). Association of ar-buscular mycorrhizal fungi (AMF) with Brachiaria precumbens (Poaceae) in tailing and its potential to increase the growth of maize (Zea mays). Biodiversitas Journal of Biological Di-versity, 18(1). CrossRef
Tang, B., Man, J., Lehmann, A., & Rillig, M. C. (2024). Arbuscular mycorrhizal fungi attenuate neg-ative impact of drought on soil functions. Global Change Biology, 30(7), e17409. CrossRef
Trouvelot A., Kough J. L., Gianinazzi-Pearson V. (1986). Measurement of the mycorrhization rate VA of a root system. Search for estimation methods with functional significance. Physiologi-cal and Genetical Aspects of Mycorrhizae 1986, V. Gianinazzi-Pearson and S. Gianinazzi (Eds.). INRA Press, Paris: 217-221. Direct Link.
Van Der Heijden, M. G., Martin, F. M., Selosse, M. A., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New phytologist, 205(4), 1406-1423. CrossRef
Yaseen, T., Ahmad, S., Rehman, K. U., Asad, F., Waheed, A., Gul, R. & Akhtar, N. (2020). Arbuscu-lar mycorrhizal fungal spore density and root colonization in weeds of carrot field at Char-sadda, Pakistan. Pakistan Journal of Agricultural Research, 33(4), 341. CrossRef
Yin, X., Zhang, W., Feng, Z., Feng, G., Zhu, H., & Yao, Q. (2024). Improved observation of colonized roots reveals the regulation of arbuscule development and senescence by drought stress in the arbuscular mycorrhizae of citrus. Horticultural Plant Journal, 10(2), 425-436. CrossRef
Ziane, H., Hamza, N., & Meddad-Hamza, A. (2021). Arbuscular mycorrhizal fungi and fertilization rates optimize tomato (Solanum lycopersicum L.) growth and yield in a Mediterranean agroecosystem. Journal of the Saudi Society of Agricultural Sciences, 20(7), 454-458. Cross-Ref