Main Article Content

Abstract

Evaluation of the genetic variability, heritability and genetic advance of traits is an essential task in any plant improvement program. Twenty maize genotypes were replicated twice in a randomized complete block design on a research plot of Prithu Technical College, Deukhuri Dang of Nepal from June 2017 to September 2017 to determine genetic variability, heritability, and genetic advance for different agronomic traits. Analysis of variance showed significant differences in the traits tassel length, ear height, days to fifty percent tasseling, days to fifty percent silking, kernels’ rows ear-1, kernels row-1 and grain yield. The highest GCV (31.53%) and PCV (39.20%) were recorded on grain yield. Grain yield and ear height recorded high heritability along with high genetic advance as a percent of mean (GAM). Tassel length and kernels row-1 showed high heritability integrated with moderate GAM and moderate heritability integrated with moderate GAM respectively. Further, grain yield showed a significant and positive correlation with plant height, tassel length, ear height, cob length, cob diameter, kernels’ rows ear-1, and kernels row-1. Thus the selection of ear height, tassel length and kernels row-1 is suggested as they performed better in terms of both heritability and GAM than other traits and they also recorded a significant and positive correlation with yield.

Article Details

How to Cite
Rai, R., Khanal, P., Chaudhary, P., & Dhital, R. (2021). Genetic variability, heritability and genetic advance for growth, yield and yield related traits in maize genotypes. Journal of Agriculture and Applied Biology, 2(2), 96-104. https://doi.org/10.11594/jaab.02.02.04

References

Abe, A., & Adelegan, C. A. (2019). Genetic variability, heritability and genetic advance in shrunken-2 super-sweet corn (Zea mays L. saccharata) populations. Journal of Plant Breeding and Crop Science, 11(4), 100–105. CrossRef
Aci, M. M., Lupini, A., Mauceri, A., Morsli, A., Khelifi, L., & Sunser, F. (2018). Genetic variation and structure of maize populations from Saoura and Gourara oasis in Algerian Sahara. BMC Genetics, 19, Article number 51. CrossRef
Ahmad, S. Q., Khan, S., Ghaffar, M., & Ahmad, F. (2011). Genetic diversity analysis for yield and other parameters in maize (Zea mays L.) genotypes. Asian Journal of Agricultural Sciences, 3(5), 385–388. Direct Link.
Allard, R.W. (1960). Principles of Plant Breeding. John Wiley and Sonc Inc.,
Bartaula, S., Panthi, U., Timilsena, K., Acharya, S. S., & Shrestha, J. (2019). Variability, heritability and genetic advance of maize (Zea mays L.) genotypes. Agriculture, Livestock and Fisheries, 6(2), 163–169. CrossRef
Bello, O. B., Ige, S. A., Azeez, M. A., Afolabi, M. S., Abdulmaliq, S. Y., & Mahamood, J. (2012). Heritability and genetic advance for grain yield and its component characters in maize (Zea mays L.). International Journal of Plant Research, 2(5), 138-145. CrossRef
Beyene, T., Botha, A. M., & Myburg, A. A. (2005). Phenotypic diversity for morphological and agronomic traits in traditional Ethiopian highland maize accessions. South African Journal of Plant and Soil, 22(2), 100–105. CrossRef
Bhiusal, T. N., Lal, G. M., Marker, S., & Synrem, G. J. (2017). Genetic variability and traits association in maize (Zea mays L.) genotypes. Annals of Plants and Soil Research, 19(1), 59–65. Direct Link.
Bilgin, O., Korkut, K. Z., Baser, I., Dalioglu, O., Ozturk, I., Kahraman, T., & Balkan, A. (2010). Variation and heritability for some semolina characteristics and grain yield and their relations in durum wheat (Triticum durum Desf.). World Journal of Agricultural Science, 6(2), 301–308. Direct Link.
Carangal, V. R., Ali, S. M., Koble, A.F., & Rinke, E. H. (1971). Comparison of S1 with testcross evaluation for recurrent selection in maize. Crop Science, 11, 658–661. CrossRef
Fehr, W. (1987). Principles of cultivar development. Macmillan Publish. Co.
Ghimire, B., & Timsina, D. (2015). Analysis of yield and yield attributing traits of maize genotypes in Chitwan, Nepal. World Journal of Agricultural Research, 3(5), 153–162. Direct Link.
Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). John Wesley and Sons.
Ishaq, M., Rahman, H., Hassan, G., Iqbal, M., Khalil, I. A., Khan, S .A., Khan, S. A., Rafiullah., & Hussain, J. (2015). Genetic potential, variability and heritability of various morphological and yield traits among maize synthetics. Electronic Journal of Biology, 11(4), 187–191. Direct Link.
Islam, M. A., Raffi, S. A., Hossain, M. A., & Hassan, A. (2015). Analysis of genetic variability, heritability and genetic advance for yield and yield associated traits in some promising advanced lines of rice. Progressive Agriculture, 26, 26–31. CrossRef
Jaiswal, P., Banshidhar., Agrahari, S. R., & Singh, R. (2019). Estimation of genetic parameters for yield related traits and grain zinc concentration in biofortified inbred lines of maize (Zea mays L.). The Pharma Innovation Journal, 8(3), 87–91. Direct Link.
Johnson, H. W., Robinson, H. F., & Camstock, R. (1955). Estimates of genetic and environmental variability in soybean. Agronomy Journal, 47, 314–318. CrossRef
Kandel, B. P., Sharma, B .K., Sharma, S., & Shrestha, J. (2018). Genetic variability, heritability and genetic advance estimates in early maize (Zea mays L.) genotypes in Nepal. Agricultura, 107, 29–35. Direct Link.
Kharel, R, Ghimire, S. K., Ojha, B. R., & Koirala, K. B. (2017). Estimation of genetic parameters, correlation and path coefficient analysis of different genotypes of maize (Zea mays L.). International Journal of Agriculture Innovations and Research, 6(1), 191–195. Direct Link.
Kumar, G. P., Reddy, V. N., Kumar, S. S., & Rao, P. V. (2014). Genetic variability, heritability and genetic advance studies in newly developed maize genotypes (Zea mays L.). International Journal of Pure & Applied Bioscience, 2(1), 272-275. Direct Link.
Markovic, M., Josipovic, M., Plavsic, H., Jambrovic, A., Liovic, I., & Teodorovic, R. (2011). Influence of genotype on maize (Zea mays L.) yield and yield parameters in irrigated and fertilized conditions. Proceedings. 46th Croatian and 6th International Symposium on Agriculture, Opatija Croatia. Direct Link.
Meena, M. K., Singh, R., & Meena, H. P. (2016). Genetic variability, heritability and genetic advance studies in newly developed maize genotypes (Zea mays L.). The Bioscan, 11(3), 1787–1791. Direct Link.
Neupane, B., Poudel, A., & Wagle, P. (2020). Varietal evaluation of promising maize genotypes in mid hills of Nepal. Journal of Agriculture and Natural Resources, 3(2), 127–139. CrossRef
Pandit, R., Bhatta, R., Bhusal, P., Acharya, B., Subedi, S., & Shrestha, J. (2020). Response of local potato cultivars to late blight disease (Phytophthora infestans (Mont.) de Bary) under field conditions. Agro Bali : Agricultural Journal, 3(1), 28–37. CrossRef
Rajesh, V., Kumar, S. S., Reddy, V. N., & Sanker, A. S. (2013). Studies on genetic variability, heritability and genetic advance estimates in newly developed maize genotypes (Zea mays L.). International Journal of Applied Biology and Pharmaceutical Technology, 4(4), 242–245. Direct Link.
Raut, S. K., Ghimire, S. K., Kharel, R., Kuwar, C. B., Sapkota, M., & Kushwaha, U. K. S. (2017). Study of yield and yield attributing traits of maize. American Journal of Food Science and Health, 3(6), 123–129.
Reddy, V. R., Jabeen, F., Sudarshan, M. R., & Rao, A. S. (2013). Studies on genetic variability, heritability, correlation and path analysis in maize (Zea mays L.) over locations. International Journal of Applied Biology and Pharmaceutical Technology, 4(1), 195–199. Direct Link.
Robinson, H. F., Cornstock, R. E., & Harvery, P. H. (1949). Estimates of heritability and degree of dominance in corn. Agronomy Journal, 41, 353–359. CrossRef
Selvaraj, C. I., & Nagarajan, P. (2011). Interrelationship and path coefficient studies for qualitative traits, grain yield and other yield attributes among maize (Zea mays L.). International Journal of Plant Breeding and Genetics, 5(2), 209–223. CrossRef
Sesay, S., Ojo, D., Ariyo, O.J., & Meseka, S. (2016). Genetic variability, heritability and genetic advance studies in top-cross and three-way cross maize (Zea mays L) hybrids. Maydica, 61(2), 1–7. Direct Link.
Shengu, M. (2017). Genetic study of some maize (Zea mays L.) genotypes in humid tropic of Ethiopia. International Journal of Scientific and Research Publications, 7(1), 281–287. Direct Link.
Shengu, M. K., Gissa, D. W., Zelleke, H., & Tilahun, L. (2016). Combining ability analysis of early maturing maize (Zea mays.L) inbred lines in central rift valley of Ethiopia. International Journal of Scientific and Research Publications, 6(8), 551–563. Direct Link.
Statistical Information on Nepalese Agriculture. (2020) Ministry of Agriculture and Livestock Development (MoALD), Singh Durbar, Kathmandu, Nepal.
Sivasubramanjan, S., & Menon, M. (1973). Heterosis and inbreeding depression in rice. Advances in Agronomy, 47, 85–140.
Sravanti, K., Devi, I. S., Sudarshan, M. R., & Supriya, S. (2017). Evaluation of maize genotypes (Zea mays L.) for variability, heritability and genetic advance. International Journal of Current Microbiology and Applied Sciences, 6(10), 2227–2232. CrossRef
Taye, A. (2014). Genetic variability of yield and yield related traits in some maize inbred lines (Zea mays L.) developed for mid-altitude agro-ecology of Ethiopia. [MSc Thesis Submitted to the Collage of Natural and Computational Sciences, Department of Biology, School of Graduate Studies], Haramaya University.
Vashistha, A., Dixit, N. N., Dipika., Sharma, S .K., & Marker, S. (2013). Studies on heritability and genetic advance estimates in maize genotypes. Bioscience Discovery, 4(2), 65–168. Direct Link.