Groundwater availability for irrigation purposes: Case of Middle Cheliff aquifer Algeria

Authors

  • Saci Nadjai Laboratory for Fire Safety Engineering of Buildings and Protection of Their Urban And Peri-urban Environment, University Hassiba Ben bouali Of Chlef, BP 151, Chlef 02000 https://orcid.org/0000-0003-4592-2095
  • Hichem Khammar Labotary of Functionnel Ecology and Environment Department of Biology, University Larbi Ben M’hidi Of Oum El Bouaghi BP 10 Oum El Bouaghi 04000, Algeria. https://orcid.org/0000-0001-9629-598X
  • Nadhir Bouchema Labotary of Functionnel Ecology and Environment Department of Biology, University Larbi Ben M’hidi Of Oum El Bouaghi BP 10 Oum El Bouaghi 04000, Algeria. https://orcid.org/0000-0002-3362-0789
  • Abdelkader Nadir Nabed Laboratory for Fire Safety Engineering of Buildings and Protection of their Urban and Periurban Environment, Faculty of Natural and Life Sciences, University of Hassiba Benbouali, Chlef, Algeria https://orcid.org/0009-0005-9769-4858
  • Abdelkader Bouderbala PRAVDURN Research Laboratory. Earth Sciences Department, University of Djilali Bounaama, Khemis Miliana, Algeria https://orcid.org/0000-0001-9049-5665
  • Lahcen Benaabidate Laboratory of Functional Ecology and Environment Engineering, University of Sidi Mohammed Ben Abdellah, Fez, Morocco https://orcid.org/0000-0002-5776-7638

DOI:

https://doi.org/10.11594/jaab.06.01.02

Keywords:

semi-arid, irrigation, groundwater quality index for irriga-tion

Abstract

The Middle Cheliff Plain faces persistent difficulties in manag-ing its limited groundwater reserves. This region, covering 321 km² in a semi-arid climate, is subjected to a detailed study of groundwater quality for irrigation purposes. In this context, twelve samples were carefully collected and analyzed. Nine es-sential parameters were evaluated, including physicochemical parameters and irrigation indices It is noted that the waters have an average conductivity of 4231 μs.cm-1 and a significant chloride content of 23.33 meq/l which has an unacceptable cat-egory for irrigation also the majority of the indices present fair-ly acceptable and permissible values for irrigation SAR and RSC (100%) of the samples respectively, also the PI 75% of the pie-zometers are suitable for irrigation These criteria were used to assess the suitability of groundwater for irrigation. In most of the plain, the Groundwater Quality Index for Irrigation (GWQII) indicates both acceptable and poor quality. These results show that most of these chemical constituents are above the FAO standards. Therefore, irrigation water poses a danger to the region's vast fields and its fragile crops. The proposed ap-proach has demonstrated efficacy in the assessment of groundwater quality for irrigation purposes, exhibiting versa-tility in application and adaptability across diverse geograph-ical regions, including humid, arid, and semi-arid settings worldwide.

Downloads

Download data is not yet available.

Author Biographies

  • Saci Nadjai, Laboratory for Fire Safety Engineering of Buildings and Protection of Their Urban And Peri-urban Environment, University Hassiba Ben bouali Of Chlef, BP 151, Chlef 02000

    Dr

    Laboratoire d’Ingénierie de la Sécurité Incendie des Bâtiments et de la Protection De Leur Environnement Urbain et Périurbain, Université Hassiba Ben Bouali De Chlef, BP 151, Chlef 02000

  • Hichem Khammar, Labotary of Functionnel Ecology and Environment Department of Biology, University Larbi Ben M’hidi Of Oum El Bouaghi BP 10 Oum El Bouaghi 04000, Algeria.

    Dr 

    Labotary de l’Ecologie Fonctionnelle et de l’Environnement Département de Biologie, Université Larbi Ben M’hidi D’Oum El Bouaghi BP 10 Oum El Bouaghi 04000, Algérie.

  • Abdelkader Nadir Nabed, Laboratory for Fire Safety Engineering of Buildings and Protection of their Urban and Periurban Environment, Faculty of Natural and Life Sciences, University of Hassiba Benbouali, Chlef, Algeria

    Dr

    Laboratoire d’Ingénierie de la Sécurité Incendie des Bâtiments et de la Protection de leur Environnement Urbain et Périurbain, Faculté des Sciences Naturelles et de la Vie, Université Hassiba Benbouali, Chlef, Algérie

  • Abdelkader Bouderbala, PRAVDURN Research Laboratory. Earth Sciences Department, University of Djilali Bounaama, Khemis Miliana, Algeria

    Pr

    Laboratoire de recherche PRAVDURN. Département des Sciences de la Terre, Université de Djilali Bounaama, Khemis Miliana, Algérie

  • Lahcen Benaabidate, Laboratory of Functional Ecology and Environment Engineering, University of Sidi Mohammed Ben Abdellah, Fez, Morocco

    PR

    Laboratoire d’écologie fonctionnelle et d’ingénierie de l’environnement, Université Sidi Mohammed Ben Abdellah, Fès, Maroc

References

Abdel-Mageed, Y., Hassan, H., Abdel-Rahim, A., Abd EL- Azeim, M., &Matouk, M. (2018). Evalua-tion of groundwater quality for irrigation and its effects on some soil chemical properties in the western desert of El-minia governorate, Egypt. Journal of Soil Sciences and Agricultural Engineering, 9(8), 283–294. CrossRef

Adagba, T., Kankara, A. I., & Idris, M. A. (2022). Evaluation of groundwater suitability for irriga-tion purpose using gis and irrigation water quality indices. Fudma journal of sciences, 6(2), 63–80. CrossRef

Ali, S., & Armanuos, A. M. (2023). Introduction to “groundwater in arid and semi-arid areas. groundwater in arid and semi-arid areas, 3–9.

Alsahli, A. (2023). Evaluation of groundwater quality utilizing integrated physicochemical pa-rameters and indexing approaches. International Journal of Environmental Studies and Re-searches, 2(2), 89–98. CrossRef

Alvarez, M. del P., Dapeña, C., Bouza, P. J., Ríos, I., & Hernández, M. A. (2014). Groundwater sali-nization in arid coastal wetlands: a study case from Playa Fracasso, Patagonia, Argentina. Environmental Earth Sciences, 73(12), 7983–7994. CrossRef

Arveti, N., Sarma, M. R.S., Aitkenhead-Peterson, J.A., Sunil, K. (2011). Fluoride incidence in groundwater: a case study from Talupula, Andhra Pradesh, India. Environmental monitor-ing and assessment, 172: 427-443. CrossRef

Asadi, E., Isazadeh, M., Samadianfard, S., Ramli, M. F., Mosavi, A., Nabipour, N., & Chau, K. W. (2019). Groundwater quality assessment for sustainable drinking and irriga-tion. Sustainability, 12(1), 177.

Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture Rome, Food and Agriculture Organization of the United Nations-FAO. 29(1), pp 37-70.p.174.

Bahir, M., Ouhamdouch, S., & Carreira, P. M. (2018). Geochemical and isotopic approach to de-crypt the groundwater salinization origin of coastal aquifers from semi-arid areas (Essaoui-ra basin, Western Morocco). Environmental Earth Sciences, 77(13). CrossRef

Bari, J. A., Perumal, K., & Muthuramalingam, S. (2021). Evaluation of Groundwater quality and suitability for irrigation using hydro-chemical process in Bhavani taluk, Erode District, Ta-milnadu, India. CrossRef

Barica, J. (1972). Salinization of groundwater in arid zones. Water Research, 6(8), 925–933. CrossRef

Barick, S. R., & Ratha, B. K. (2014). Hydro-chemical analysis and evaluation of groundwater qual-ity of Hial area, Bolangir district, Odisha, India. Journal of Geosciences and Geomatics, 2(5), 22-28.

Bar-Tal, A., Kiwonde, E., Kanner, B., Nitsan, I., Shawahna, R., & Kurtzman, D. (2020). Nitrogen fertilization of plants irrigated with desalinated water: a study of interactions of nitrogen with chloride. Water, 12(9), 2354. CrossRef

Behera, S. M., & Baliarsingh, Dr. F. (2017). Hydrogeochemical analysis and quality evaluation of groundwater for irrigation purposes in Puri District, Odisha. International Journal of Trend in Scientific Research and Development, 1 (6), 1286–1295. CrossRef

Behera, S., & Mishra, S. (2017). Hydrogeochemical analysis and quality apraisal of groundwater for irrigation, puri district, odisha, India. International Journal of Advanced Research, 5(9), 1534–1544. CrossRef

Belouchrani, A. S., Bouderbala, A., & Hocine, M. (2019). Participatory approaches to sustainable development and management of soil resources in arid zones of Algeria. water resources in Algeria - Part I, 269–292. CrossRef

Bhat, M. A, Mir, S.H, Qureshi, M.A. (2016).Assessment of groundwater quality for irrigation pur-poses using chemical indices. Journal of Environmental Management, 183. 565-574. Cross-Ref.

Birhane, H., Hagos, M. (2021). Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: a review. Journal of Natural Sciences Research. CrossRef

Bouderbala, A. (2014). Groundwater salinization in semi-arid zones: an example from Nador plain (Tipaza, Algeria). Environmental Earth Sciences, 73(9), 5479–5496. CrossRef

Bouderbala, A. (2017a). Assessment of water quality index for the groundwater in the upper Cheliff plain, Algeria. Journal of the Geological Society of India, 90(3), 347-356.

Bouderbala, A. (2017b). Effects of climate variability on groundwater resources in coastal aqui-fers (Case of Mitidja Plain in the North Algeria). Groundwater and Global Change in the Western Mediterranean Area, 43–51. CrossRef

Bouderbala, A. (2019a). The human impact of septic tank effluent on groundwater quality in the rural area of ain soltane (ain defla), Algeria. Environmental & Socio-economic Studies, 7(2), 1-9. CrossRef

Bouderbala, A. (2019b). The impact of climate change on groundwater resources in coastal aqui-fers: case of the alluvial aquifer of mitidja in Algeria. Environmental Earth Sciences, 78(24). CrossRef

Bouderbala, A., & Gharbi, B. Y. (2017). Hydrogeochemical characterization and groundwater quality assessment in the intensive agricultural zone of the upper cheliff plain, Algeria. En-vironmental Earth Sciences, 76(21). CrossRef

Bouderbala, A., & Hadj Mohamed, N. (2020). Water resources in coastal aquifers of algeria face climate variability: case of alluvial aquifer of mitidja in Algeria. Water Resources in Algeria - Part I, Assessment of Surface and Groundwater Resources, 203–224. CrossRef

Bouderbala, A., & Merouchi, H. (2023). Impact of climate change and human activities on groundwater resources in the alluvial aquifer of upper Cheliff, Algeria. Indian Journal of Ecology, 50(3), 575-583.

Bouderbala, A., Remini, B., Saaed Hamoudi, A., & Pulido-Bosch, A. (2016). Application of multi-variate statistical techniques for characterization of groundwater quality in the coastal aq-uifer of Nador, Tipaza (Algeria). Acta Geophysica, 64(3), 670–693. CrossRef

Bouimouass, H., Fakir, Y., Tweed, S., Sahraoui, H., Leblanc, M., & Chehbouni, A. (2022). Tradi-tional irrigation practices sustain groundwater quality in a semiarid piedmont. Catena, 210, 105923. CrossRef

Bounab, S., Khemmoudj, K., & Sedrati, N. (2022). Assessment and physicochemical characteriza-tion of groundwater quality for irrigation and drinking purposes in bazer sakhra (Eastern Area of Algeria). Journal of Ecological Engineering, 23(8), 118–131. CrossRef

Boussaada, N., Boualem, B., Benhamida, S. A., Hammad, N., & Kharroubi, M. (2023). Geochemis-try and Water Quality Assessment of Continental Intercalary Aquifer in Ouargla Region (Sa-hara, Algeria). Journal of Ecological Engineering, 24(2), 279–294. CrossRef

Bradai, A., Yahiaoui, I., Douaoui, A., Abdennour, M. A., Gulakhmadov, A., & Chen, X. (2022). Com-bined modeling of multivariate analysis and geostatistics in assessing groundwater irriga-tion sustenance in the middle Cheliff Plain (North Africa). Water, 14(6), 924. CrossRef

Burger, F., & Čelková, A. (2003). Salinity and sodicity hazard in water flow processes in the soil. Plant, Soil and Environment, 49(7), 314–320. CrossRef

Buvaneshwari, S., Riotte, J., Sekhar, M., Sharma, A. K., Helliwell, R., Kumar, M. S. M., Braun, J. J., & Ruiz, L. (2020). Potash fertilizer promotes incipient salinization in groundwater-irrigated semi-arid agriculture. Scientific Reports, 10(1). CrossRef

Çetin, M., Gölpınar, M. S., & Erkan Can, M. (2020). Deriving mathematical relationships between electrical conductivity and concentrations of some minerals in groundwater: a case study in the mediterranean region of Turkey. International Journal of Innovative Approaches in Ag-ricultural Research, 4(3), 318–327. CrossRef

Chellouai, N., Masmoudi, A., Messameh, A. (2023). Hydrogeochemical quality of groundwater used for irrigation in ziban region, Algeria. Al-Qadisiyah Journal For Agriculture Sciences , 13(1), 23-35. CrossRef

Das, J., Dr, A., Dr, R., & Murali, A. (2019). Hydro-geochemical evaluation of groundwater for its suitability to various uses; a case study of a small mountainous river basin in western ghats, South India. International Journal of Research in Advent Technology, 7(5), 665–676. Cross-Ref

Das, R., Subba Rao, N., Sahoo, H. K., & Sakram, G. (2023b). Nitrate contamination in groundwater and its health implications in a semi-urban region of Titrol block, Jagatsinghpur district, Od-isha, India. Physics and Chemistry of the Earth, Parts A/B/C, 132, 103424. CrossRef

Djema, M., & Mebrouk, N. (2022). Groundwater quality and nitrate pollution in the Nador plain, Algeria. Environmental Earth Sciences, 81(18). CrossRef

Doneen, L.D. (1964). Notes on water quality in agriculture. published as a water science and en-gineering paper 4001, department of water science and engineering, university of Califor-nia, Davis.

Eaton, F.M. (1950). Significance of carbonates in irrigation waters. Soil science, 69(2). 123-134. CrossRef.

Eid, M. H., Elbagory, M., Tamma, A. A., Gad, M., Elsayed, S., Hussein, H., Moghanm, F. S., Omara, A. E.-D., Kovács, A., & Péter, S. (2023). Evaluation of groundwater quality for irrigation in deep aquifers using multiple graphical and indexing approaches supported with machine learning models and GIS techniques, Souf Valley, Algeria. Water, 15(1), 182. CrossRef

Eid, M.H., Tamma, A.A., Péter, S., Kovács, A. (2022). Hydrogeochemical evaluation of groundwa-ter and its suitability for drinking and irrigation using water quality index, statistical and geochemical modelling, Debila and El-Oued regions, Algeria. CrossRef.

Elgettafi, M., Elmeknassi, M., Elmandour, A., Himi, M., Lorenzo, J. M., & Casas, A. (2022). δ34S, δ18O, and δ2H-δ18O as an approach for settling the question of groundwater salinization in neogene basins: the north of Morocco in Focus. Water, 14(21), 3404. CrossRef

Elkhalki, S., Hamed, R., Jodeh, S., Ghalit, M., Elbarghmi, R., Azzaoui, K., Lamhamdi A. (2023). Study of the quality index of groundwater (GWQI) and its use for irrigation purposes using the techniques of the geographic information system (GIS) of the plain Nekor-Ghiss (Moroc-co). Frontiers in Environmental Science; 11. 1179283. CrossRef

Food and Agriculture Organization FAO. (2016). Aquastat: FAO's information system on water and agriculture. Food and Agriculture Organization of the United Nations

Farahani, E., Emami, H., & Keller, T. (2018). Impact of monovalent cations on soil structure. Part II. results of two swiss soils. International Agrophysics, 32(1), 69–80. CrossRef

Fehdi C, Rouabhia A, BaaliF, Boudoukha A. (2009). The hydrogeochemical characterization of Morsott-El Aouinet aquifer. northeastern Algeria. Environmental Geology; 58. 1611-1620. CrossRef.

Gaagai, A., Aouissi, H.A., Bencedira, S., Hinge, G., Athamena, A., Heddam ,S., Ibrahim, H. (2023). Application of water quality indices, machine learning approaches, and GIS to identify groundwater quality for irrigation purposes: A case study of Sahara Aquifer, Doucen Plain, Algeria. Water 15(2), 289. CrossRef

Gad M, El-Hendawy S, Al-Suhaibani N, Tahir MU, Mubushar M, Elsayed S. Combining hydrogeo-chemical characterization and a hyperspectral reflectance tool for assessing quality and suitability of two groundwater resources for irrigation in Egypt. Water 2020;12(8):2169. CrossRef.

Gaikwad, H., Shaikh, H., &Umrikar, B. (2019). Evaluation of groundwater quality for domestic and irrigation suitability from upper bhima basin, western india: a hydro-geochemical per-spective. Hydrospatial Analysis, 2(2), 113–123. CrossRef

Gautam, V. K., Pande, C. B., Moharir, K. N., Varade, A. M., Rane, N. L., Egbueri, J. C., &Alshehri, F. (2023). Prediction of sodium hazard of irrigation purpose using artificial neural network modelling. Sustainability, 15(9), 7593. CrossRef.

Gayar, A. E. (2020). A study on water’s green economy for development in agriculture. Interna-tional Journal of Agricultural Invention, 5(02), 218–232. CrossRef

Guettaf, M., Maoui, A., &Ihdene, Z. (2017). Assessment of water quality: a case study of the Sey-bouse River (North East of Algeria). Applied water science, 7(1), 295-307.

Gupta, S.K, Gupta, I. C. (1987). Management of saline soils and waters. Oxford and IBH Publishing Company, New Delhi. 52:1067-1074. CrossRef

Hamed Y. (2022). Vulnerability characterization for multi-carbonate aquifer systems in semiarid climate. case of Algerian–Tunisian transboundary basin. International Journal of Energy and Water Resources, 6(1). 67-80. CrossRef

Hansen, J. A., Jurgens, B. C., & Fram, M. S. (2018). Quantifying anthropogenic contributions to century-scale groundwater salinity changes, San Joaquin Valley, California, USA. Science of The Total Environment, 642, 125–136. CrossRef

Hennia, K., Saaed Hamoudi, A., & Bouderbala, A. (2022). Hydrogeochemical characterization and groundwater quality assessment: a case study of the alluvial aquifer in the middle western cheliff (Algeria). International Journal of Environmental Analytical Chemistry, 104(9), 2075–2095. CrossRef

John, B., & Das, S. (2020). Role of electrical conductivity on salinity and mineralization due to groundwater level fluctuations in Kolkata City. IOP Conference Series: Earth and Environ-mental Science, 505(1), 012021. CrossRef

Kayemah, N., Al-Ruzouq, R., Shanableh, A., & Gokhan Yilmaz, A. (2021). Evaluation of groundwa-ter quality using groundwater quality index (GWQI) in Sharjah, UAE. E3S Web of Confer-ences, 241, 01005. CrossRef

Kelley, W.P. (1963). Use of saline irrigation water. Soil Sci, 95, 385–391. CrossRef

Kelly, W.P. (1940) Permissible composition and concentration of irrigated waters. proceedings of the American society of civil engineers 66, 607-613.

Khadra, W.M., Elias, A. R., & Majdalani, M. A. (2022). A systematic approach to derive natural background levels in groundwater: application to an aquifer in north lebanon perturbed by various pollution sources. Science of The Total Environment, 847, 157-586. CrossRef

Khiyat, Z. (2022). Groundwater in the arab region: making the invisible visible. Desalination And Water Treatment, 263, 204–206. CrossRef

Madene, E., Boufekane, A., Meddi, M., Busico, G., & Zghibi, A. (2022). Spatial analysis and map-ping of the groundwater quality index for drinking and irrigation purposes in the alluvial aquifers of upper and middle Cheliff basin (north-west Algeria). Water Supply, 22(4), 4422-4444.

Maman Hassan, A., &Firat Ersoy, A. (2022). Hydrogeochemical and isotopic investigations on the origins of groundwater salinization in Çarşamba coastal aquifer (North Turkey). Environ-mental Earth Sciences, 81(4). CrossRef

Manalang, M. F. P., Tala, R. L., Dizon, P. D., David., K. C. E., & Villar, M. J. M. (2020). Reclaimed water project: effects of high na concentration in soil and plant tissues. International Jour-nal of Engineering and Advanced Technology, 9(4), 1181–1187. CrossRef

Mansir, I., Bouchaou, L., Choukr-allah, R., Chebli, B., & El Otmani, M. (2017). Groundwater re-sources scarcity in souss-massa region and alternative solutions for sustainable agricultural development. groundwater and global change in the western mediterranean area, 189–197. CrossRef

Masood, A., Aslam, M., Pham, Q. B., Khan, W., & Masood, S. (2022). Integrating water quality in-dex, GIS and multivariate statistical techniques towards a better understanding of drinking water quality. Environmental Science and Pollution Research, 1-17.

CrossRef

Mattauer, M. (1958). Etude géologique de l’ouarsenis oriental (Algérie). Geological study of the eastern Ouarsenis (Algeria). PublServ Carte Géol Algérie, Alger. Bull, 17.

Mengistu, H.A., Demlie, M.B. & Abiye, T.A. (2019). Review: Groundwater resource potential and status of groundwater resource development in Ethiopia. Hydrogeoly, 27, 1051–1065 CrossRef

Nagaraju, A., Sunil Kumar, K., & Thejaswi, A. (2014). Assessment of groundwater quality for irri-gation: a case study from bandalamottu lead mining area, guntur district, andhra pradesh, south India. Applied Water Science, 4, 385-396.

Nwankwo, C. B., Hoque, M. A., Islam, M. A., & Dewan, A. (2020). Groundwater constituents and trace elements in the basement aquifers of africa and sedimentary aquifers of asia: medical hydrogeology of drinking water minerals and toxicants. Earth Systems and Environment, 4(2), 369–384. CrossRef

Öztürk, H. S., DevirenSaygın, S., Copty, N. K., İzci, E., Erpul, G., Demirel, B., Saysel, A. K., & Babaei, M. (2023). Deterioration of physical and hydraulic properties of a calcareous clay-rich soil in central Anatolia, Turkey, By Sodic Water. CrossRef

Pandao, Manish, R., Akshay, A., Thakare, Rupeshkumar, J,. Choudhari, Nagesh, R., Navghare, Dhananjay, D., Sirsat, and Sindhu, R. Rathod. (2024). “Soil health and nutrient manage-ment”. International Journal of Plant & Soilcience,36(5):873-83. CrossRef.

Panneerselvam, B., Karuppannan, S., &Muniraj, K. (2020). Evaluation of drinking and irrigation suitability of groundwater with special emphasizing the health risk posed by nitrate con-tamination using nitrate pollution index (NPI) and human health risk assessment (HHRA). International Journal Human and Ecological Risk Assessment, 27(5), 1324–1348. CrossRef

Prasad, Y. S., & Rao, B. V. (2018). Monitoring and assessment of groundwater quality in a khondalitic terrain, Andhra Pradesh, India. Environmental Monitoring and Assessment, 190(7). CrossRef

Qadir, M., Schubert, S., Oster, J. D., Sposito, G., Minhas, P. S., Cheraghi, S. A. M., Murtaza, G., Mir-zabaev, A., & Saqib, M. (2018). High‑magnesium waters and soils: Emerging environmental and food security constraints. Science of The Total Environment, 642, 1108–1117. CrossRef.

Qiu, R., Jing, Y., Liu, C., Yang, Z., & Wang, Z. (2017). Response of hot pepper yield, fruit quality, and fruit ion content to irrigation water salinity and leaching fractions. Hort Science, 52(7), 979–985. CrossRef

Raghunath, I. I. M. (1987). Groundwater. second ed., Wiley Eastern Ltd., New Delhi. India, pp. 344–369.

Raju, N.J. (2007) Hydrogeochemical parameters for assessment of groundwater quality in the upper gunjanaeru river basin, cuddapah district, andhra pradesh, South In-dia. Environmental Geology

Rantamo, K., Arola, H., Aroviita, J., Hämälainen, H., Hannula, M., Laaksonen, R., Laamanen, T., Leppänen, M. T., Salmelin, J., Syrjänen, J. T., Taskinen, A., Turunen, J., & Ekholm, P. (2021). Risk assessment of gypsum amendment on agricultural fields: effects of sulfate on riverine biota. Environmental Toxicology and Chemistry, 41(1), 108–121. Portico. CrossRef

Richards, L.A. (1954). Diagnosis and improvement of saline and alkali soils. vol. 160. u. s. de-partment of agriculture handbook. Washington USA DC, 7-53., CrossRef

Saad, A., Fattah, M., & Gad, M. (2023). Groundwater quality evaluation for the limestone aquifer utilizing hydrochemical characteristics and imitative techniques, eastern nile valley, Egypt. International Journal of Environmental Studies and Researches, 2(3), 118–131. CrossRef

Sadick, A., Asante, P., Dugan, E., &Asaana, J. (2017). Correlation analysis of Irrigation water qual-ity parameters from lake bosomtwe in the ashanti Region of Ghana.

Sahu, P., & Sikdar, PK. (2008). Hydrochemical Framework of the aquifer in and around east kol-kata wetlands, west bengal, India. Environmental Geology, 55: 823-835.

CrossRef

Sajadian, A., & Heidarzadeh, N. (2022). The effect of the gypsum formation on the water quality of reservoirs: A case study of Kosar dam basin, Iran. Journal of Geochemical Exploration, 243, 107107. CrossRef

Samal, P., Mohanty, A. K., Khaoash, S., & Mishra, P. (2023). Hydrogeochemical characteristics and spatial analysis of groundwater quality in a semi-arid region of Western Odisha, India. Arabian Journal of Geosciences, 16(1). CrossRef

Senbayram, M., Gransee, A., Wahle, V., & Thiel, H. (2015). Role of magnesium fertilisers in agri-culture: plant–soil continuum. Crop and Pasture Science, 66(12), 1219. CrossRef

Singaraja, C. (2017). Relevance of water quality index for groundwater quality evaluation: thoothukudi district. Tamil Nadu. India. Applied water science,7. 2157-2173. CrossRef.

Soula, R., Chebil, A., McCann, L., &Majdoub, R. (2021). Water scarcity in the mahdia region of tu-nisia: are improved water policies needed. Groundwater for Sustainable Development, 12, 100-510.CrossRef

Srinivasamoorthy, K., Nanthakumar, C., Vasanthavigar M., Vijayaraghavan, K., Rajivgandhi, R. (2011) Groundwater quality assessment from a hard rock terrain, salem district of tamilna-du, India. Arabian Journal of Geosciences, 4: 91–102. CrossRef

Srinivasamoorthy, K., Vijayaraghavan, K., Vasanthavigar, M., Sarma, V. S., Rajivgandhi, R., Chid-ambaram, S., Anandhan, P., & Manivannan, R. (2010). Assessment of groundwater vulnera-bility in Mettur region, Tamilnadu, India using drastic and GIS techniques. Arabian Journal of Geosciences, 4(7–8), 1215–1228. CrossRef

Subba Rao, N., Das R., Sahoo, H.K., Gugulothu, S. (2024b).Hydrochemical characterization and water quality perspectives for groundwater management for urban development. Ground-water for Sustainable Development, 24, 101071. CrossRef

Subba Rao, N., Sunitha, B., Das, R., & Anil Kumar, B. (2022). Monitoring the causes of pollution using groundwater quality and chemistry before and after the monsoon. Physics and Chem-istry of the Earth, Parts A/B/C, 128, 103228. CrossRef

Suhartono, E., Isgandhi, R., Sulaiman, S., Rahardjo, P., & Satriyadi, L. (2019). Analysis of the effect of soil water taking on potential of soil water pollution in semarang. Bangun Rekaprima, 5(2), 29. CrossRef

Thornton, E. C. (1997). Origin of increased sulfate in groundwater at the ETF disposal site. Office of Scientific and Technical Information (OSTI). CrossRef

Todd, D.K., DoJ, W.L. (1981). Groundwater hydrology. 2nd edition. xiii + 535 pp., new york. chichester. brisbane. toronto: john wiley. ISBN 0 471 87616 X.. Geological Magazine .118(4). 442–442. CrossRef

Vallejos, A., Daniele, L., Sola, F., Molina, L., & Pulido-Bosch, A. (2020). Anthropic-induced salini-zation in a dolomite coastal aquifer. hydrogeochemical processes. Journal of Geochemical Exploration, 209, 106438. CrossRef

Vohra, P. (2023). Review on physicochemical characteristics of ground water and their health effects. Journal of Mechanical and Construction Engineering (JMCE), 3(1), 1–8. CrossRef

Wang, X., Tian, W., Zheng, W., Shah, S., Li, J., Wang, X., & Zhang, X. (2023). Quantitative relation-ships between salty water irrigation and tomato yield, quality, and irrigation water use effi-ciency: A meta-analysis. Agricultural Water Management, 280, 108213. CrossRef

Wilcox, L. V., & Durum, W. H. (1967). Quality of Irrigation Water. Irrigation of Agricultural Lands, 104–122. CrossRef

World Health Organization WHO. (2017). Guidelines for Drinking-Water Quality, 2nd edition. Geneva. Chronicle, 38(4), 104-8.

Downloads

Published

2024-12-21

How to Cite

Groundwater availability for irrigation purposes: Case of Middle Cheliff aquifer Algeria. (2024). Journal of Agriculture and Applied Biology, 6(1), 13-37. https://doi.org/10.11594/jaab.06.01.02