Main Article Content
Abstract
This study aims to monitor the impacts of pesticides on the physical and chemical quality of agricultural soil in Algeria's semi-arid region. The region primarily cultivates market garden crops such as potatoes and wheat. Sandy soil types and a semi-arid climate characterize it. Twenty- seven samples were collected from various soil horizons at different depths and locations within the study area. Among these, 9 samples were designated as controls, 9 were treated with a potent herbicide called haloxyfop-methyl ester, and the remaining 9 were treated with a fungicide containing two active ingredients: fenamidone and a methyl ester. The measured parameters (pH, conductivity, TDS, CO, MO, lime- stone, Mg+, Ca+, NO2, P2O5, K2O) exhibited variability, with the treated samples generally showing higher values than the control samples. This difference can be attributed to various factors, such as treatment con- ditions, characteristics of the study area, types of pesticides used, and the application of mineral and organic fertilizers, as well as chemical pesticides. Intensive agriculture often employs this approach, aiming to produce large quantities of food on a relatively small land area. The heavy metals analysis (iron, copper, manganese, aluminum, and chro- mium) of agricultural soil showed concentration values within interna- tional norms. Despite this, these metals remain toxic chemicals with bi- oaccumulative persistence in the environment. The uncontrolled use of pesticides impacts both the short-term and long-term soil quality. While they effectively kill weeds and fungi, they also penetrate and ac- cumulate in the soil and pollute groundwater. It is crucial to use herbi- cides sparingly and choose those with minimal environmental impact.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesti- cides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42. CrossRef
Ali, S., Ahmad, N., Dar, M. A., Manan, S., Rani, A., Alghanem, S. M. S., Khan, K. A., Sethupathy, S., Elboughdiri, N., Mostafa, Y. S., Alamri, S. A., Hashem, M., Shahid, M., & Zhu, D. (2024). Nano- Agrochemicals as Substitutes for Pesticides: Prospects and Risks. Plants, 13(1), 109. CrossRef Aubertot, J. N., Barbier, J. M., Carpentier, A., Gril, J. J., Guichard, L., Lucas, P.& Voltz, M. (2005). Pes- ticides, agriculture et environnement. Réduire l'utilisation des pesticides et limiter leurs im-
pacts environnementaux [Pesticides, agriculture and the environment. Reduce the use of pes- ticides and limit their environmental impacts]. Expertise scientifique collective, synthèse du rapport, INRA et Cemagref (France), 64. Direct Link.
Berthold, M., Boitias, M., Hebert, J. (2023). Atlas des pesticides : faits et chiffres sur les substances chimiques toxiques dans l'agriculture [Pesticide Atlas : facts and figures on toxic chemicals in agriculture]. Berlin (Allemagne): Heinrich-Böll-Stiftung. Direct Link.
Bertrand, C., Lesturgeon, A., Amiot, M. J., Dimier-Vallet, C., Dufeu, I., Habersetzer, T., & Vidal, R. (2018). Alimentation biologique : état des lieux et perspectives [Organic food ; : current si- tuation and perspectives]. Cahiers de Nutrition et de Diététique, 53(3), 141-150. CrossRef
Change, C. (2016). Agriculture and Food Security. The State of Food and Agriculture; FAO (Ed.) FAO: Rome, Italy.
Chevallier, T., Razafimbelo, T., Chapuis-Lardy, L., & Brossard, M. (2020). Carbone des sols en Afrique: Impacts des usages des sols et des pratiques agricoles [Soil Carbon in Africa: Impacts of Land Use and Agricultural Practices]. Food & Agriculture Organization FAO.Rome/Mar- seille.
Chiou, R. J. (2008). Risk assessment and loading capacity of reclaimed wastewater to be reused for agricultural irrigation. Environmental Monitoring and Assessment, 142, 255-262. CrossRef
Crouzet, O., Devers-Lamrani, M., Rouard, N., Cheviron, N., Grondin, V., & Martin-Laurent, F. (2015, November). Impact écotoxicologique de mélanges de pesticides sur des fonctions micro- biennes des sols: apport d’une prise en compte écologique dans l’évaluation des risques [Eco- toxicological impact of pesticide mixtures on soil microbial functions: contribution of ecolo- gical consideration in risk assessment]. In 7. Colloque AFEM Association Francophone d'Eco- logie Microbienne," Microbiologie et environnement: fondamentaux et applications". Direct Link.
Grandjean, A., Adnot, J., & Binet, G. (2012). A review and an analysis of the residential electric load curve models. Renewable and Sustainable energy reviews, 16(9), 6539-6565. CrossRef
Feng, S., Zhang, P., Duan, W., Li, H., Chen, Q., Li, J., & Pan, B. (2020). P-nitrophenol degradation by pine-wood derived biochar: the role of redox-active moieties and pore structures. Science of the Total Environment, 741, 140431. CrossRef
Hage‐Ahmed, K., Rosner, K., & Steinkellner, S. (2019). Arbuscular mycorrhizal fungi and their re‐
sponse to pesticides. Pest management science, 75(3), 583-590. CrossRef
Fingler, S., Mendaš, G., Dvoršćak, M., Stipičević, S., Vasilić, Ž., & Drevenkar, V. (2017). Herbicide micropollutants in surface, ground and drinking waters within and near the area of Zagreb, Croatia. Environmental Science and Pollution Research, 24, 11017-11030. CrossRef
Lakhdari, H., & Ayad, A. (2010). Les conséquences du changement climatique sur le développe- ment de l’agriculture en Algérie: quelles stratégies d’adaptation face à la rareté de l’eau? [The consequences of climate change on the development of agriculture in Algeria: what adapta- tion strategies in the face of water scarcity?]. Revue des Sciences Economiques de Gestion et Sciences Commerciales, 3(3), 19-32. https://asjp.cerist.dz/en/article/13406.
Lorenz, K., & Lal, R. (2022). Combining conventional and organic practices to reduce climate im- pacts of agriculture. In Organic Agriculture and Climate Change (pp. 201-218). Cham: Springer International Publishing. CrossRef
Mathieu, C., Pieltain, F., & Jeanroy, E. (2003). Analyse chimique des sols: Méthodes choisies [Chemical analysis of soils: Selected methods] (p. 408). Technique & Documentation- Lavoisier Paris, France.
Meliani, K., Oulbachir, K., Zemour, H., & Ardjane, T.E. (2024). The effects of herbicide application on the properties of agricultural soil in Algeria. Journal of Agriculture and Applied Biology, 5(2), 154 - 163. CrossRef
Ouédraogo, R. A., Kambiré, F. C., Kestemont, M. P., & Bielders, C. L. (2019). Caractériser la diversité des exploitations maraîchères de la région de Bobo-Dioulasso au Burkina Faso pour faciliter leur transition agroécologique [Characterizing the diversity of market gardening farms in the
Bobo-Dioulasso region of Burkina Faso to facilitate their agroecological transition]. Cahiers Agricultures, 28(20). CrossRef
Paz‐Ferreiro, J., & Fu, S. (2016). Biological indices for soil quality evaluation: perspectives and lim‐
itations. Land Degradation & Development, 27(1), 14-25.
Peshin, R., & Zhang, W. (2014). Integrated pest management and pesticide use (pp. 1-46). Springer Netherlands. CrossRef
Pereira, J. L., Antunes, S. C., Castro, B. B., Marques, C. R., Gonçalves, A. M., Gonçalves, F., & Pereira,
R. (2009). Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology, 18, 455-463. CrossRef
Rafik, F., Saber, N., Zaakour, F., Mohcine, H., Moustarhfer, K., & Marrakchi, C. (2015). Caractérisa- tion physico-chimique et estimation de la stabilité structurale des sols agricoles de la région Sidi Rahal, Sahel (Chaouia côtière, Maroc) [Physicochemical characterization and estimation of the structural stability of agricultural soils in the Sidi Rahal region, Sahel (coastal Chaouia, Morocco)]. European Scientific Journal, 11(27). Direct Link.
Shiva, V. (2020). La guerre verte : Une critique des politiques agricoles mondiales et leur impact sur l’agroécologie [The Green War: A Critique of Global Agricultural Policies and their Impact on Agroecology]. Agroecology and Sustainable Food Systems, 44(9), 1075-1089. CrossRef
Singh, A., Shraogi, N., Verma, R., Saji, J., Kar, A. K., Tehlan, S., ... & Patnaik, S. (2024). Challenges in current pest management Practices: Navigating problems and a way forward by integrating controlled release system approach. Chemical Engineering Journal, 154989. CrossRef
Tahar, W., Bordjiba, O., & Aimeur, N. (2017). Effect of hymexazole and promethazine on the phys- ico-chemical and biological quality of agricultural soils. Synthèse, 23(2), 37-44. Direct Link.
Torres-Crespo, N., Martinez-Ruiz, F., González-Muñoz, M. T., Bedmar, E. J., De Lange, G. J., & Jroundi,
F. (2015). Role of bacteria in marine barite precipitation: a case study using Mediterranean seawater. Science of the Total Environment, 512, 562-571. CrossRef
Vasu, D., Tiwary, P., Chandran, P., & Singh, S. K. (2020). Soil quality for sustainable agriculture.
Nutrient Dynamics for Sustainable Crop Production, 41-66. CrossRef
Viau, S., Majeau-Bettez, G., Spreutels, L., Legros, R., Margni, M., & Samson, R. (2020). Substitution modelling in life cycle assessment of municipal solid waste management. Waste Management, 102, 795-803. CrossRef
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-3. CrossRef
World Health Organization WHO. (2016). Evaluation of certain veterinary drug residues in food: eighty-first report of the Joint FAO/WHO Expert Committee on Food Additives (Vol. 81). World Health Organization. Direct Link.