Development of physicochemical properties and color of Arbutus unedo L. fruit during osmotic process

Penulis

  • Ibtissem Refas Laboratory of Improvement of Agricultural Productions and Protection of Ecosystems in Arid Zones LAPAPEZA, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000 Batna, Algeria.
  • Malek Amiali Food Technology and Human Nutrition Research Laboratory, National Higher School of Agron-omy (ES1603), El Harrach, Algeria
  • Safia Belkhir Laboratory of Improvement of Agricultural Productions and Protection of Ecosystems in Arid Zones LAPAPEZA, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000 Batna, Algeria.

DOI:

https://doi.org/10.11594/jaab.06.01.08

Kata Kunci:

Arbutus unedo L, Color, Drying, Mass transfer kinetics, Osmotic dehydration

Abstrak

Arbutus unedo L. fruit, rich in bioactive compounds with health bene-fits, experiences rapid softening and significant postharvest quality changes, affecting its consumer appeal and storage life. This study investigates the effect of osmotic dehydration (OD) on the physico-chemical composition, water loss (WL), sugar gain (SG), weight re-duction (WR) and color during drying. The fruit was subjected to OD using sucrose solutions of varying concentrations (30, 50, and 60 °Brix) and temperatures (30 and 40 °C). The fresh fruit exhibited a moisture content of 57 %, a pH of 4.37, and 16.90 % of total soluble solids (TSS). The total phenolic content of arbutus fruit was 15.62 ± 0.78 µg/mg extract and the total flavonoid content was 1.63 ± 0.06 µg/mg extract. Our findings revealed that OD at 30 °Brix enhanced the color and reduced the browning compared to untreated fruit (p < 0.05). OD using a 60 °Brix solution notably reduced the moisture con-tent by approximately 13% while simultaneously lowering the pH and increasing the TSS significantly (p < 0.05). These changes strong-ly correlated with WL, SG and sucrose concentration (R = 0.89, 0.79, and 0.82, respectively). OD prevented the color deterioration during drying with E ranging between 6.43 ± 3.37 and 19.97 ± 3.52. The study proposes that OD at 60 °Brix and 40 °C produces dried arbutus unedo fruit with reduced moisture content and minimized color dete-rioration after the application of convective drying, rendering it suit-able for industrial applications as functional food and the production of value-added dried berries.

Unduhan

Data unduhan tidak tersedia.

Referensi

Abrahão, F. R., & Corrêa, J. L. G. (2021). Osmotic dehydration: More than water loss and solid gain. Critical Reviews in Food Science and Nutrition, 63(17), 2970–2989. CrossRef

Ahmed, I., Qazi, I. M., & Jamal, S. (2016). Developments in osmotic dehydration technique for the p¬reservation of fruits and vegetables. Innovative Food Science and Emerging Technologies, 34, 29–43. CrossRef

Amami, E., Khezami, W., Mezrigui, S., Badwaik, L. S., Bejar, A. K., Perez, C. T., & Kechaou, N. (2017). Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics sonochemistry, 36, 286-300. CrossRef

Alarcão-E-Silva, M. L. C. M. M., Leitão, A. E. B., Azinheira, H. G., & Leitão, M. C. A. (2001). The ar-butus berry: Studies on its color and chemical characteristics at two mature stages. Journal of Food Composition and Analysis, 14(1), 27–35. CrossRef

Albuquerque, B. R., Prieto, M. A., Barros, L., & Ferreira, I. C. F. R. (2017). Assessment of the stabil-ity of catechin-enriched extracts obtained from Arbutus unedo L . fruits : Kinetic mathemat-ical modeling of pH and temperature properties on powder and solution systems. Industrial Crops & Products, 99, 150–162. CrossRef

Asghari, A., Zongo, P. A., Osse, E. F., Aghajanzadeh, S., Raghavan, V., & Khalloufi, S. (2024). Re-view of osmotic dehydration: Promising technologies for enhancing products’ attributes, opportunities, and challenges for the food industries. Comprehensive Reviews in Food Sci-ence and Food Safety, 23(3), e13346. CrossRef

Bajoub, A., Ennahli, N., Ouaabou, R., Chaji, S., Hafida, H., Soulaymani, A., Idlimam, A., Merah, O., Lahlali, R., & Ennahli, S. (2023). Investigation into solar drying of Moroccan strawberry tree (Arbutus unedo L.) fruit: Effects on drying kinetics and phenolic composition. Applied Sci-ences, 13(2), 769. CrossRef

Boussalah, N., Boussalah, D., Cebadera-Miranda, L., Fernández-Ruiz, V., Barros, L., Ferreira, I. C., & Madani, K. (2018). Nutrient composition of Algerian strawberry-tree fruits (Arbutus un-edo L.). Fruits, 73(5), 283-297. CrossRef

Calín-Sánchez, Á., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, Á. A., & Figiel, A. (2020). Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods, 9(9), 1261. CrossRef

de Bruijn, J., & Bórquez, R. (2014). Quality retention in strawberries dried by emerging dehydra-tion methods. Food Research International, 63, 42–48. CrossRef

Delgado-Pelayo, R., Gallardo-Guerrero, L., & Hornero-Méndez, D. (2016). Carotenoid composi-tion of strawberry tree (Arbutus unedo L.) fruits. Food chemistry, 199, 165-175. CrossRef

Dermesonlouoglou, E., Chalkia, A., & Taoukis, P. (2018). Application of osmotic dehydration to improve the quality of dried goji berry. Journal of Food Engineering, 232, 36-43. CrossRef

Dziki, D., Polak, R., Rudy, S., Krzykowski, A., Gawlik-Dziki, U., Rózyło, R., Miś, A., & Combrzyński, M. (2018). Simulation of the process kinetics and analysis of physicochemical properties in the freeze drying of kale. International Agrophysics, 32(1), 49–56. CrossRef

Enaru, B., Drețcanu, G., Pop, T. D., Stǎnilǎ, A., & Diaconeasa, Z. (2021). Anthocyanins: Factors af-fecting their stability and degradation. Antioxidants, 10(12), 1967. CrossRef

Falade, K. O., Igbeka, J. C., & Ayanwuyi, F. A. (2007). Kinetics of mass transfer, and colour chang-es during osmotic dehydration of watermelon. Journal of Food Engineering, 80(3), 979–985. CrossRef

Jansrimanee, S., & Lertworasirikul, S. (2020). Synergetic effects of ultrasound and sodium algi-nate coating on mass transfer and qualities of osmotic dehydrated pumpkin. Ultrasonics Sonochemistry, 69, 105256. CrossRef

Ghellam, M., Zannou, O., Galanakis, C. M., Aldawoud, T. M. S., Ibrahim, S. A., & Koca, I. (2021). Vacuum-assisted osmotic dehydration of autumn olive berries: Modeling of mass transfer kinetics and quality assessment. Foods, 10(10). CrossRef

Giraldo, G., Talens, P., Fito, P., & Chiralt, A. (2003). Influence of sucrose solution concentration on kinetics and yield during osmotic dehydration of mango. Journal of Food Engineering, 58(1), 33-43. CrossRef

Guendouze-bouchefa, N., Madani, K., Chibane, M., Boulekbache-makhlouf, L., Hauchard, D., Kiendrebeogo, M., Stévigny, C., Ndjolo, P., & Duez, P. (2015). Phenolic compounds , antioxi-dant and antibacterial activities of three Ericaceae from Algeria. Industrial Crops & Prod-ucts, 70, 459–466. CrossRef

Hamdan, N., Lee, C. H., Wong, S. L., Fauzi, C. E. N. C. A., Zamri, N. M. A., & Lee, T. H. (2022). Pre-vention of enzymatic browning by natural extracts and genome-editing: A review on recent progress. Molecules, 27(3), 1101. CrossRef

Islam, M. Z., Das, S., Monalisa, K., & Sayem, A. S. M. (2019). Influence of osmotic dehydration on mass transfer kinetics and quality retention of ripe papaya (Carica papaya L) during drying. AgriEngineering, 1(2), 220-234. CrossRef

Kaur, A., & Sogi, D. S. (2017). Effect of osmotic dehydration on physico‐chemical properties and pigment content of carrot (Daucus carota L) during preserve manufacture. Journal of Food Processing and Preservation, 41(5), e13153. CrossRef

Leahu, A., Ghinea, C., & Oroian, M. A. (2020). Osmotic dehydration of apple and pear slices: Color and chemical characteristics. Ovidius University Annals of Chemistry, 31(2), 73-79.79. CrossRef

Lemus-Mondaca, R., Miranda, M., Andres Grau, A., Briones, V., Villalobos, R., & Vega-Gálvez, A. (2009). Effect of osmotic pretreatment on hot air drying kinetics and quality of Chilean pa-paya (Carica pubescens). Drying Technology, 27(10), 1105–1115. CrossRef

Maieves, H. A., Ribani, R. H., Morales, P., & de Cortes Sánchez-Mata, M. (2015). Evolution of the nutritional composition of Hovenia dulcis Thunb. Pseudo fruit during the maturation pro-cess. Fruits, 70(3), 181-187. CrossRef

Mari, A., Parisouli, D.N., Krokida, M. (2024). Exploring osmotic dehydration for food preserva-tion: Methods, modelling, and modern Applications. Foods, 13(17), 2783. CrossRef

Masztalerz, K., Łyczko, J., & Lech, K. (2021). Effect of filtrated osmotic solution based on concen-trated chokeberry juice and mint extract on the drying kinetics, energy consumption and physicochemical properties of dried apples. Molecules, 26(11), 3274. CrossRef

Morales, D. (2022). Use of strawberry tree (Arbutus unedo) as a source of functional fractions with biological Activities. Foods, 11(23). CrossRef

Nowacka, M., Wiktor, A., Anuszewska, A., Dadan, M., Rybak, K., & Witrowa-Rajchert, D. (2019). The application of unconventional technologies as pulsed electric field, ultrasound and mi-crowave-vacuum drying in the production of dried cranberry snacks. Ultrasonics Sono-chemistry, 56, 1-13. CrossRef

Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the thin-layer drying of fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618. CrossRef

Orak, H. H., Aktas, T., Yagar, H., Isbilir, S. S., Ekinci, N., & Sahin, F. H. (2011). Antioxidant activity, some nutritional and colour properties of vacuum dried strawberry tree (Arbutus unedo L.) fruit. Acta Scientiarum Polonorum, Technologia Alimentaria, 10(3), 331–338. Direct Link.

Orak, H. H., Aktas, T., Yagar, H., Isbilir, S. S., Ekinci, N., & Sahin, F. H. (2012). Effects of hot air and freeze drying methods on antioxidant activity, colour and some nutritional characteristics of strawberry tree (Arbutus unedo L.) fruit. Food Science and Technology International, 18(4), 391–402. CrossRef

Özcan, M. M., & Uslu, N. (2023). The effects of oven dehydration on bioactive compounds, antiox-idant activity, fatty acids and mineral contents of strawberry tree fruit. Processes, 11(2), 541. CrossRef

Özkan-Karabacak, A., Özcan-Sinir, G., Çopur, A. E., & Bayizit, M. (2022). Effect of osmotic dehy-dration pretreatment on the drying characteristics and quality properties of semi-dried (In-termediate) kumquat (Citrus japonica) slices by vacuum dryer. Foods, 11(14), 2139. Cross-Ref

Pashazadeh, H., Ali Redha, A., & Koca, I. (2024). Effect of convective drying on phenolic acid, fla-vonoid and anthocyanin content, texture and microstructure of black rosehip fruit. Journal of Food Composition and Analysis, 125, 105738. CrossRef

Porciuncula, B. D. A., Zotarelli, M. F., Carciofi, B. A. M., & Laurindo, J. B. (2013). Determining the effective diffusion coefficient of water in banana (Prata variety) during osmotic dehydra-tion and its use in predictive models. Journal of Food Engineering, 119(3), 490–496. Cross-Ref

Ramya, V., & Jain, N. K. (2017). A review on osmotic dehydration of fruits and vegetables: An in-tegrated approach. Journal of Food Process Engineering, 40(3), e12440. CrossRef

Ruiz-Rodríguez, B. M., Morales, P., Fernández-Ruiz, V., Sánchez-Mata, M. C., Cámara, M., Díez-Marqués, C., & Tardío, J. (2011). Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Research Internation-al, 44(5), 1244-1253. CrossRef

Salem, I. B., Ouesleti, S., Mabrouk, Y., Landolsi, A., Saidi, M., & Boulilla, A. (2018). Exploring the nutraceutical potential and biological activities of Arbutus unedo L. (Ericaceae) fruits. In-dustrial Crops and products, 122, 726-731. CrossRef

Silva, M. A. da C., Silva, Z. E. da, Mariani, V. C., & Darche, S. (2012). Mass transfer during the os-motic dehydration of West Indian cherry. LWT - Food Science and Technology, 45(2), 246–252. CrossRef

Steet, J. A., & Tong, C. H. (1996). Degradation kinetics of green color and chlorophylls in peas by colorimetry and HPLC. Journal of Food Science, 61(5), 924–928. CrossRef

Takwa, S., Caleja, C., Barreira, J. C., Soković, M., Achour, L., Barros, L., & Ferreira, I. C. (2018). Ar-butus unedo L. and Ocimum basilicum L. as sources of natural preservatives for food indus-try: A case study using loaf bread. LWT-Food Science and Technology, 88, 47-55. CrossRef

Zielinska, M., & Markowski, M. (2017). Effect of microwave-vacuum, ultrasonication, and freez-ing on mass transfer kinetics and diffusivity during osmotic dehydration of cranberries. Drying Technology, 36(10), 1158–1169. CrossRef

Diterbitkan

2025-01-25

Cara Mengutip

Development of physicochemical properties and color of Arbutus unedo L. fruit during osmotic process. (2025). Journal of Agriculture and Applied Biology, 6(1), 100-113. https://doi.org/10.11594/jaab.06.01.08