Main Article Content

Abstract

Soil salinity poses a significant challenge to agricultural productivity, necessitating precise measurement methods. Rather than relying on complex determinations like saturated paste extracts (ECe), a practical alternative involves assessing soil salinity through the Electrical Conductivity (EC) of soil-water extracts. This simplified yet reliable method is crucial for understanding the impact of soil salinity on agricultural yields. To improve accuracy in representing soluble salts relevant to plant growth, the conversion of EC from soil water extracts to ECe becomes pivotal.In an experimental study, a clear relationship was sought between the Electrical Conductivity (EC) of saturated paste extracts (ECe) and the ratios found in soil-water extracts (1/2.5 and 1/5). Fifty samples of coarse-textured soil were collected from the Djamâa palm grove in Sidi Yahia village, located in the Oued Righ region within the Djamaa Zone. The analysis of the collected data revealed compelling findings, indicating a robust and statistically significant correlation between values obtained from ECe and those derived from EC1/2.5 and EC1/5 (correlation coefficient of R = 0.93 and 0.91, at a significance level of P = 0.05). These results highlight the promising potential of accurately estimating ECe in coarse-textured soils by employing EC1/2.5 and EC1/5, paving the way for streamlining assessment methodologies for soil salinity. This study not only elucidates the correlation between conductivity measures but also proposes a practical means to estimate soil salinity more efficiently. The findings contribute to informed decision-making in agricultural practices within the Northern Sahara's Djamâa palm grove and similar regions, offering valuable insights for sustainable soil management.

Article Details

How to Cite
Bakhti, D., Oustani, M., Halilat, M. T., Zemour, H., Khadoumi, A., & Belhouadjeb , F. A. (2024). Correlation between electrical conductivity in saturated paste extracts and different diluted extracts (1/2.5, 1/5) of coarse-textured soils . Journal of Agriculture and Applied Biology, 5(1), 18-34. https://doi.org/10.11594/jaab.05.01.02

References

Abdennour, M. A., Douaoui, A., Piccini, C., Pulido, M., Bennacer, A., Bradaï, A., ... & Yahiaoui, I. (2020). Predictive mapping of soil electrical conductivity as a Proxy of soil salinity in south-east of Algeria. Environmental and Sustainability Indicators, 8, 100087.
Aboukila, E. F., & Abdelaty, E. F. (2017). Assessment of saturated soil paste salinity from 1:2.5 and 1:5 soil-water extracts for coarse textured soils. Alexandria Science Exchange Journal, 38, 722–732.
Aboukila, E. F., & Norton, J. B. (2017). Estimation of saturated soil paste salinity from soil water extracts. Soil Science, 182, 107–113.
Baize, D. (2018). Guide des analyses courantes en pédologie [Guide to common soil analysis] (2ème éd.). Paris: National Institute of Agronomic Research. 257p.
Belkesier, M. S., Zeddouri, A., Halassa, Y., & Kechiched, R. (2018). Characterization and geostatis-tical mapping of water salinity: A case study of terminal complex in the Oued Righ Valley (Southern Algeria). Proceedings of Technologies and Materials for Renewable Energy, Envi-ronment and Sustainability, 1968 (1). CrossRef
Belksier, M. S., Chaab, S., Abour, F., Zeddouri, A., Bouselsal, B., & Kechiched, R. (2014). L’irrigation et le risque de pollution saline. Exemple des eaux de la nappe libre dans la ré-gion de Touggourt [Irrigation and the risk of saline pollution: Example of groundwater in the Touggourt region]. International Journal for Environment & Global Climate Change, 2(3), 32-39. ISSN 2310-6743.
Benslama, A., Khanchoul, K., Benbrahim, F., Boubehziz, S., Chikhi, F., & Navarro-Pedreño, J. (2020). Monitoring the variations of soil salinity in a palm grove in Southern Algeria. Sus-tainability, 12(15), 6117.
Butcher, K., Wick, A. F., De Sutter, T., Chatterjee, A., & Harmon, J. (2016). Soil salinity: a threat to global food security. Agronomy Journal, 108 (6), 2189–2200.
Chaib, W., Bouchahm, N., Harrat, N., Zahi, F., Bougherira, N., & Djabri, L. (2013). Caracterisation hydrogeochimique des eaux geothermales de la nappe du continental intercalaire de la re-gion de l’oued righ [Hydrogeochemical characterization of geothermal waters from the Continental Intercalary aquifer of the Oued Righ region]. Algerian Journal of Arid Regions, No. 13 Special Issue Scientific and Technical Research Center on Arid Regions.
Corwin, D. L., & Yemoto, K. (2020). Salinity: electrical conductivity and total dissolved solids. Soil Science Society of America Journal, 84, 1442–1461. CrossRef
Diagnoses and improvement of saline and alkali soils. (1954). Agriculture. Handbook No. 60. USSL, Riverside, CA, USA.
Franzen, D., Gasch, C., Augustin, C., DeSutter, T., & Kalwar, N. (2019). Managing saline soils in North Dakota. North Dakota State University Extension. SF1087 Revis., 1087.
He, Y., DeSutter, T., Hopkins, D., Jia, X., & Wysocki, D. A. (2013). Predicting ECe of the saturated paste extract from value of EC1/5. Canadian Journal of Soil Science, 93, 585–594. doi:10.4141/CJSS2012-080
He, Y., DeSutter, T., Prunty, L., Hopkins, D., Jia, X., & Wysocki, D. A. (2012). Evaluation of 1:5 soil to water extract electrical conductivity methods. Geoderma, 185–186, 12–17.
Herrero, J., & Pérez-Coveta, O. (2005). Soil salinity changes over 24 years in a Mediterranean ir-rigated district. Geoderma, 125(3-4), 287-308.
Hossain, M. S., Rahman, G. M., Solaiman, A. R. M., Alam, M. S., Rahman, M. M., & Mia, M. B. (2020). Estimating electrical conductivity for soil salinity monitoring using various soil-water ratios depending on soil texture. Communications in Soil Science and Plant Analysis, 51(5), 635-644.
Isdory, D. P., Massawe, B. H. J., & Msanya, B. M. (2021). Predicting soil ECe based on values of EC1:2.5 as an indicator of soil salinity at Magozi Irrigation Scheme, Iringa, Tanzania. Tan-zania Journal of Agricultural Sciences, 20(1), 63-71.
Ismayilov, A. I., Mamedov, A. I., Fujimaki, H., Tsunekawa, A., & Levy, G. J. (2021). Soil salinity type effects on the relationship between the electrical conductivity and salt content for 1:5 Soil-to-Water Extract. DOI: 10.3390/su13063395. Direct Link.
John, A., Fuentes, H. R., & George, F. (2021). Characterization of the water retention curves of Everglades wetland soils. Geoderma, 381, 114724.
Kadri, A., Baouia, K., Kateb, S., Al-Ansari, N., Kouadri, S., Najm, H. M., ... & Khedher, K. M. (2022). Assessment of groundwater suitability for agricultural purposes: a case study of South Oued Righ region, Algeria. Sustainability, 14(14), 8858.
Kargas, G., Chatzigiakoumis, I., Kollias, A., Spiliotis, D., Massas, I., & Kerkides, P. (2018). Soil sa-linity assessment using saturated paste and mass soil: water 1:1 and 1:5 ratios extracts. Wa-ter, 10, 1589.
Kargas, G., Londra, P., & Sotirakoglou, K. (2022). The effect of soil texture on the conversion fac-tor of 1:5 soil/water extract electrical conductivity (EC1:5) to soil saturated paste extract electrical conductivity (ECe). Water, 14, 642.
Khorsandi, F., & Yazdi, F. A. (2007). Gypsum and texture effects on the estimation of saturated paste electrical conductivity by two extraction methods. Communications in Soil Science and Plant Analysis, 38, 1105-1117.
Khorsandi, F., & Yazdi, F. A. (2011). Estimation of saturated paste extracts’ electrical conductivity from 1: 5 soil/water suspension and gypsum. Communications in Soil Science and Plant Analysis, 42(3), 315-321.
Klaustermeier, A., Tomlinson, H., Daigh, A. L. M., Limb, R., DeSutter, T., & Sedivec, K. (2016). Comparison of soil-to-water suspension ratios for determining electrical conductivity of oil-production-water-contaminated soils. Canadian Journal of Soil Science, 96, 233-243.
Libutti, A., Cammerino, A. R. B., & Monteleone, M. (2018). Risk assessment of soil salinization due to tomato cultivation in Mediterranean climate conditions. Water, 10, 1503.
Mehibel, S., & Dorbi, M. (2022). Aptitude des eaux de la nappe du Continental Intercalaire à l’irrigation. Cas de la région d’Oued Righ (SE Algérien) [Suitability of the Continental Inter-calaire groundwater for irrigation: Case of the Oued Righ region (SE Algeria)]. Master's the-sis, p. 28.
Monteleone, M., Lacolla, G., Caranfa, G., & Cucci, G. (2016). Indirect measurement of electrical conductivity and exchangeable cations on soil water extracts: assessing the precision of the estimates. Soil Science, 181, 465-471.
Morand, D.-T. (2001). Soil landscape of the Woodburn 1:100000 sheet. Department of land and water conservation. Sydney. 273p.
Oustani, M., Halilat, M. T., & Chenchouni, H. (2015). Effect of poultry manure on the yield and nutriments uptake of potato under saline conditions of arid regions. Emirates Journal of Food and Agriculture, 106-120.
Oustani, M., Mehda, S., Halilat, M. T., & Chenchouni, H. (2023). Yield, growth development and grain characteristics of seven Quinoa (Chenopodium quinoa Willd.) genotypes grown in open-field production systems under hot-arid climatic conditions. Scientific Reports, 13(1), 1991.
Ozcan, H., Ekinci, H., Yigini, Y., & Yuksel, O. (2006). Comparison of four soil salinity extraction methods. Proceedings of 18th International Soil Meeting on Soil Sustaining Life on Earth, Managing Soil and Technology, May 22–26, 2006, Sanlıurfa, Turkey, pp. 697-703.
Pérez-Sirvent, C., Martínez-Sanchez, M. J., Vidal, J., & Sánchez, A. (2003). The role of low-quality irrigation water in the desertification of semi-arid zones in Murcia, SE Spain. Geoderma, 113(1-2), 109–125.
Rayment, G. E., & Lyons, D. J. (2011). Soil chemical methods: Australasia (Vol. 3). Australian-Based Science and Technology Publishing.
Rhoades, J. D., F. Chanduvi, S. Lesch. (1999). Soil salinity assessment. Methods and interpretation of electrical conductivity measurements. FAO Irrigation and Drainage. Paper 57. Food and Agriculture Organization of the United Nations, Rome.
Rodier, J., Legube, B., & Merlet, N. (2009). L’Analyse de l’eau, 9e édition Entièrement Mise À Jour [Water Analysis, 9th Edition Fully Updated]. Dunod, Paris.
Shama, L. N., Mark, F. C., Strobel, A., Lokmer, A., John, U., & Mathias Wegner, K. (2016). Transgenerational effects persist down the maternal line in marine sticklebacks: gene ex-pression matches physiology in a warming ocean. Evolutionary Applications, 9 (9), 1096-1111.
Soil Survey Staff. (2011). Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Direct Link.
Soil Survey Staff. (2011). Soil survey laboratory information manual (Soil Survey Investigations Report No. 45, Version 2.0). In Burt, R. (Ed.), Aqueous extraction, Method 4.3.3 (pp. 167). Natural Resources Conservation Service, Lincoln, NE.
Tassano, M., Montañez, A., Nuñez, L., Trasante, T., González, J., Irigoyen, J., ... Cabrera, M. (2020). Spatial cross-correlation between physicochemical and microbiological variables at super-ficial soil with different levels of degradation. CATENA, 105000–. doi:10.1016/j.catena.2020.105000.
United States Salinity Laboratory. (1954). Diagnosis and improvement of saline and alkali soils. Agriculture . Handbook. no. 60. United States Salinity Laboratory, Riverside.
Sonmez, J. S., Buyuktas, D., Okturen, F., & Citak, S. (2008). Assessment of different soil to water ratios (1:1, 1:2:5, 1:5) in soil salinity studies. Geoderma, 144, 361–369.
Wang, Q., Li, X., Zhao, C., Pei, L., & Wan, S. (2023). Evaluation analysis of the saturated paste method for determining typical coastal saline soil salinity. Soil & Tillage Research, 225, 105549.
Wang, Y., Wang, Z. X., Lian, X. J., Xiao, H., Wang, L. Y., & He, H. D. (2011). Measurements of soil electrical conductivity in Tianjin coastal area. Tianjin Agricultural. Sci., 17, 18–21.
Wilcox, L. V. (1948). The Quality of water for irrigation use. United States department of agricul-ture, Washington. Technical bulletin, n° 962, 40.
World Reference Base for Soil Resources. (2015). International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, 106. FAO, Rome.
Yahiaoui, I., Douaoui, A., Zhang, Q., & Ziane, A. (2015). Soil salinity prediction in the Lower Che-liff plain (Algeria) based on remote sensing and topographic feature analysis. Journal of Ar-id Land, 7, 794-805.
Zhang, Y., Tan, Y. W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438 (7065), 201-204.